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Abstract

This paper studies a model of industry oligopoly, in which firms face stochastic

demand, differ in their unit production costs, and have access to the same partially

reversible investment technology. We characterize firms’ investment behavior explic-

itly, as average-Q rules that depend on the industry’s concentration, as measured by

the Herfindahl index, and capital intensity. The model predicts that the relation be-

tween expected returns and book-to-market is strong and monotonic within industries,

but weak and non-monotonic across industries, providing a theoretical basis for the

claims of Cohen and Polk (1999). The data strongly support these predictions: the

value premium appears to be driven by intra-industry differences in firms’ produc-

tion efficiencies, not by cross-industry differences in firms’ dependence on bricks-

and-mortar.

Keywords: Tobin’sQ, market structure, value premium, real options, asset pricing.

JEL Classification: G12, E22, D43, L1.

�I would like to thank John Cochrane, Stuart Currey, Peter DeMarzo, Jan Eberly, Gene Fama, Andrea

Frazzini, Rob Gertner, Toby Moskowitz, Milena Novy-Marx, Josh Rauh, Jacob Sagi, Will Strange, Amir

Sufi, and Stijn Van Nieuwerburgh, for discussions and comments. Financial support from the Center for the

Research in Securities Prices at the University of Chicago Booth School of Business is gratefully acknowl-

edged.
�University of Chicago Booth School of Business, 5807 S Woodlawn Avenue, Chicago, IL 60637. Email:

rnm@ChicagoBooth.edu.



1 Introduction

This paper develops a model of dynamic oligopoly and describes firms’ equilibrium invest-

ment policies. We then derive implications for the cross-section of expected returns, and

provide empirical support for these predictions.

We study firms that produce a homogeneous industry good, each in proportion to the

capital they employ in production. Production is costly, and varies across firms, with more

efficient producers incurring lower unit production costs. Firms can freely buy and sell

capital, which depreciates over time. No adjustment costs are associated with investing or

disinvesting, but the purchase price of new capital exceeds the price at which it may be sold

outside the industry. Firms compete oligopolistically, facing an iso-elastic demand curve

with a stochastic level.

The paper extends the framework employed by Leahy (1993) to study the impact of

irreversibility and uncertainty on the investment decisions of perfectly competitive firms,

and of a monopolist. In Leahy (1993), firms face an isoelastic demand curve, have access

to an irreversible, linear, incremental investment technology, and produce operating profits

proportional to the level of their capital stock and the level of the stochastic demand vari-

able. This is generalized in Abel and Eberly (1996) to allow for costly reversibility, and in

Grenadier (2002) to allow for oligopolistic competition among homogeneous firms.1

We are particularly concerned with generalizing the framework in two dimensions.

First, in order to generate a value premium, we include the operating leverage of Carlson,

Fisher and Giammarino (2004) and Sagi and Seasholes (2007), i.e., we make assumptions

that allow operating income to have a high sensitivity to revenue growth. Second, in order

to generate meaningful cross sectional predictions, we include firm heterogeneity.

Operating leverage generates a value premium by making firms’ assets-in-place, which

1 Investment in this class of models is significantly “lumpier” than in quadratic adjustment cost models.

Firms’ investment behavior can typically be characterized by “inaction regions,” in which firms undertake
no investment, and “trigger thresholds,” at which firms invest or disinvest. Firms’ behavior is consequently
characterized by periodic episodes of intense investment, interspersed with stretches in which no investment

occurs.
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contribute to book value, riskier than their growth options, which contribute only to market

value. This mechanism requires both operating costs and operational inflexibility. Together

these “lever” the sensitivity of the value of assets-in-place to demand, because the value of

assets-in-place consists of the capitalized value of the profits they produce.2

This is most easily illustrated with a simple example. If a firm spends ninety cents

on operating costs for every dollar of revenues it generates, then a one percent increase in

demand, if it increases the price of its output one percent but leaves its costs unchanged,

increases the firm’s profits, and potentially its value, ten percent.

Including operating leverage in the model requires that we make an alternative assump-

tion regarding the production technology available to firms. In Leahy (1993), Abel and

Eberly (1996), and Grenadier (2002), firms implicitly utilize a Cobb-Douglas technology,

which allows firms to substitute out of factors that entail ongoing costs (i.e., labor) into

those that do not (i.e., capital). With this technology a firm’s costs are as sensitive as its

revenues to the underlying demand variable, completely shutting down the operating lever-

age channel. Consequently, with the Cobb-Douglas production technology a firm’s growth

options are always riskier than its assets-in-place. Firms also never experience operating

losses. We therefore assume, in order to generate costs that are less sensitive than rev-

enues to demand, that all factors of production entail ongoing costs. With this assumption

production is always costly, and revenues can be more sensitive to demand than costs.

The motivation for the second generalization of the modeling framework is straightfor-

ward: we would like to generate meaningful cross sectional predictions, and this requires

heterogeneity. Our analysis consequently allows firms to differ in their production efficien-

cies, i.e., firms have different unit costs of production.

2 Other equilibrium models that employ operating leverage to generate a value premium include Zhang
(2005) and Aguerrevere (2006). Zhang focuses on the role costly reversibility plays in generating a value

premium, without explicitly linking it to the operating leverage mechanism. Aguerrevere (2006) argues that
costly production and equilibrium effects together imply that competitive industries should be riskier than
concentrated industries in recessions, but less risky in expansions. This is consistent, provided assets-in-

place are unconditionally riskier than growth options, with Hou and Robinson’s (2006) result that firms in
more concentrated industries earn lower average returns.
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We show that heterogeneity in firms’ productivities, in conjunction with competitive

pressures, leads to a natural, equilibrium industrial organization, and that firms’ optimal

investment behavior can be simply characterized in a Q-theoretic framework in terms of

extensively studied, observable economic variables. Firms invest in new capacity when

the market-to-book ratio of the industry, in aggregate, reaches a critical level that is: 1)

increasing in industrial concentration, as measured by the Herfindahl index associated with

the endogenous organization; 2) decreasing in consumers’ price-elasticity of demand for

the good firms produce; and 3) decreasing in the industry’s capital intensity, as measured by

the ratio of the book value of capital to annual operating expenses. Firms disinvest when the

industry market-to-book ratio reaches a lower threshold that may be characterized similarly,

but which depends additionally on the reversibility of capital. These thresholds may be

characterized particularly elegantly in terms of a Lerner (market power) index calculated

to account for the full marginal cost of production, like that suggested by Pindyck (1985).3

The equilibrium solution represents a Cournot outcome. Firms, when investing, balance

the benefit of net new production (i.e., the firm’s new production minus the production this

discourages its competitors from adding) against the costs. The true cost of new capacity

exceeds the direct development cost, because new capacity imposes a negative externality

on ongoing assets. New capacity, by increasing aggregate industry production, tends to

lower the unit price of firms’ output, decreasing the revenues from ongoing production.

When choosing how much to invest, a firm takes into account the adverse effect this invest-

ment has on the market price, but only to the extent that it impacts its own output. That

is, a firm internalizes the effective price externality in proportion to its market share.4 A

low cost producer invests more than a high cost producer, simply because she produces

more efficiently, but these higher investment levels increase the low cost producer’s market

3 There are also economic reasons for preferring this formulation. The Lerner index better quantifies
firms’ true oligopoly power, and the associated allocative inefficiencies, than does the Herfindahl.

4 Ghemawat and Nalebuff (1985) implicitly recognize that larger firms internalize more of the price ex-

ternality from altering capacity when arguing that high capacity firms should reduce capacity in declining
industries earlier than low capacity firms.
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share, and consequently the extent to which she internalizes the price externality. The equi-

librium outcome is market shares that equate firms’ marginal values of capital.5 Because

competitive pressures naturally drive firms to market shares that equate firms’ marginal val-

uations of capital, the industry’s organization is determined by firms’ relative production

efficiencies. That is, the equilibrium organization is a consequence of firms’ relative unit

costs of doing business. Competitive pressures also place efficiency bounds on industry

participation.

We also derive and test implications of our theory. The model predicts that the re-

lation between expected returns and book-to-market across industries is weak and non-

monotonic, but that the relation between expected returns and book-to-market within in-

dustries is strong and monotonic. This provides a theoretical basis for Cohen and Polk’s

(1998) contention that the value premium is largely an intra-industry phenomenon.

Empirical investigation conducted here strongly supports these predictions. Sorting

firms on the basis of intra-industry book-to-market generates significant variation in re-

turns, which is explained by the three-factor model. Sorting firms on the basis of industry

book-to-market, however, generates no significant variation in returns, despite generating

significant variation in book-to-market and more variation in HML loadings than the intra-

industry sort. The three-factor model consequently severely misprices the inter-industry

value-growth spread. In fact, more generally, when pricing industry portfolios the aver-

age effect of including HML in the pricing model is to misprice the portfolios. Caution

should be exercised, therefore, using the Fama-French factors to risk-adjust the returns to

portfolios formed on the basis of industry level variables.

This suggests that a fundamental rethinking of the value premium is required. The

value premium is not something that accrues to bricks-and-mortar. The data does not sup-

5 The fact that the equilibrium solution represents a Cournot outcome should perhaps not come as a
surprise. The model considered in this paper resembles a dynamic version of the investment game considered

by Kreps and Scheinkman (1983). In Kreps and Scheinkman, producers face Bertrand-like prices competition
in the goods market, but do so based on capacities that result from earlier investment decisions, and this yields
outcomes that are quite generally Cournot. In the dynamic model presented in this paper, prices are set in the
short-run while investment decisions have long-run consequences, and again the outcome is Cournot.

4



port contentions that “glamour” industries are “overpriced,” and consequently provide low

average returns going forward. In the data, the value premium accrues to inefficient produc-

ers, which have high book-to-markets, i.e., low valuations relative to book capital, relative

to other firms in the same industry. Efficient producers’ large profit margins provide a

cushion against negative economic shocks, and investors are willing to pay a premium for

this “insurance.” 6 A return spread consequently arises between portfolios of high cost pro-

ducers with low valuations and low cost producers with high valuations. This, not industry

characteristics, drives the value premium. Note that this finding is inconsistent with Lettau

and Wachter’s (2007) duration-based explanation of the value premium.7

A simple, alternative sorting methodology suggested by the model, which controls for

cross-industry variation in book-to-market, yields higher value-growth spreads than sorting

on book-to-market directly, despite generating less variation in the book-to-market charac-

teristic and lower HML loadings. The value measure employed in this sort, which is sim-

ilar to that previously employed by Cohen and Polk (1998), completely subsumes book-

to-market in parametric tests; after controlling for our value measure, book-to-market is

uncorrelated with returns in the cross-section. Differences in accounting practices and stan-

dards across industries cannot explain this result. These tests suggest that book-to-market,

from the perspective of predicting the cross-section of returns, is simply a noisy measure

of the true predictive variable, book-to-market relative to industry book-to-market.

Employing this value measure, and following the methodology that Fama and French

(1993) use to construct HML, we construct an alternative value factor. This factor prices

HML, but carries a significantly positive three-factor alpha. The realized Sharpe ratio on

the factor exceeds that on the ex post tangency portfolio of the three Fama-French factors

over the June 1973 to January 2007 sample period. Its information ratio relative to the

6 Hou and Robinson (2006) employ similar intuition when arguing that highly profitable, low risk
“growth” firms in concentrated industries differ fundamentally from firms with similarly high book-to-

markets in competitive industries.
7 Growth industries have longer average durations than value industries. The duration based explanation

consequently predicts, counter-factually, that “bricks-and-mortar” industries should generate higher average
returns than “new economy” industries.
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Fama-French factors over that same period exceeds that of momentum.

The remainder of the paper is organized as follows. Section 2 presents the economic

model, with oligopolistic firms that differ in their unit costs of production. Section 3 de-

scribes firms’ equilibrium behavior. Section 4 considers the cross-sectional variation in

valuation and risk exposures that result from firms’ equilibrium behavior. Section 5 devel-

ops and tests empirical predictions of the theory. Section 6 uses guidance provided by the

model to construct a more efficient value factor. Section 7 considers implications of our

empirical results for investors. Section 8 concludes.

2 Economy

An “industry” consists of n competitive, heterogeneous firms, which are assumed to max-

imize the expected present value of risk-adjusted cash flows discounted at the constant

risk-free rate r . These firms employ capital, which may be bought at a price that we will,

without loss of generality, normalize to one, and may be sold outside the industry at a price

˛ < 1, to produce a flow of a non-storable good or service, which we will refer to as the

“industry good.”8 While we are assuming, for the sake of parsimony, that the cost of cap-

ital is fixed, it is simple to extend the model to allow for a variable cost of capital, and in

particular to a cost of capital that is linked to the demand for capital. We will discuss this

extension further at the appropriate juncture.

A firm can produce a flow of the industry good proportional to the level of capital it

employs, but firms differ in the efficiency of their production technologies. In particular,

firms’ technologies may differ in the amount of capital required to produce a unit of the

good. At any time firm i can produce a quantity (or “supply”) of the good S it D Ki
t =ci

where Ki
t is firm i’s capital and ci is firm i’s capital requirement per unit of production

(i.e., c�1
i is firm i’s capital productivity). Aggregate industry production is then St D

8 In the case of complete irreversibility (i.e., ˛ D 0) we will still allow for the free disposal of capital.

That is, a firm can always “sell” capital and cease production, even if the firm receives no consideration from
the sale.
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��� 0Kt , where Kt D .K1
t ;K

2
t ; :::;K

n
t /

0 and ��� D .c�1
1 ; c�1

2 ; :::; c�1
n /0 denote the vectors of

firms’ capital stocks and firms’ capital productivities, respectively, and aggregate capital

employed in the industry isKt D 1111111110Kt where 111111111 D .1; 1; :::; 1/0 is the n-vector of ones.

The good may be sold in a competitive market at the market clearing price Pt . The

total instantaneous gross revenue generated by each unit of capital employed by firm i is

thereforePt=ci . The market clearing price for firms’ output is assumed to satisfy an inverse

demand function of a constant elasticity form,

Pt D

�
Xt

St

�


(1)

where St D ��� 0Kt is the instantaneous aggregate supply of the good and �1=
 is the price

elasticity of demand.9 We will assume 
 < n, which will assure that no firm can increase

its own revenues by decreasing output. We will also assume that the multiplicative demand

shock Xt is a geometric Brownian process under the risk-neutral measure, i.e., that

dXt D �XXtdt C �XXtdBt

where �X < r and �X are known constants, and Bt is a standard Wiener process.10;11

Production is also assumed to entail an operating cost. This operating cost, which is

9 This formulation is equivalent to assuming that prices are set by market clearing, and that demand is

time varying at any given price, but has constant elasticity with respect to price

Dt D Xt P
�1=

t :

The level of the demand shock, Xt , may then be thought of as the quantity that consumers would demand if
the good had unit price.

10 To support this we could assume, for example, that X evolves as a geometric Brownian process under

the physical measure, with drift ��
X and volatility �X , and that a tradable asset z exists with a price that

diffuses according to

dzt D �zzt dt C �zzt dBt ;

in which case �X D ��
X � �X where �X D �X .�z � r/ =�z is the “market price of demand risk.”

11 It is sufficient, for the general form of the equilibrium solution, to assume that the multiplicative demand
shock follows a time-homogeneous diffusion process, but making an explicit evolutionary assumption allows
for an explicit characterization of firms’ behavior in terms of the price of the industry good. For a further

discussion of alternative specifications see Grenadier (2002).

7



non-discretionary, is assumed to be proportional to the level of capital employed, with a

unit cost per period per unit of capital employed of �. Firm i’s total operating costs are

then Ki
t �, so � is the ratio of a firm’s operating costs to its book value. An industry that

is capital-intensive will therefore be characterized by a small �, while an industry that is

labor-intensive, e.g., an industry that relies extensively on skilled human capital, will be

characterized by a large �.

Firm i’s net revenues from production, i.e., gross revenues from production less oper-

ating costs, are then a function of the state variables Kt and Xt , and are given by

Ri .Kt ; Xt/ D
Ki
t

ci

�
Xt

��� 0Kt

�


�Ki
t �: (2)

Note that firm i produces S it D Ki
t =ci of the good at a cost, excluding investment, of Ki

t �,

so the firm’s unit cost of production, ci�, is proportional to ci , which motivates our choice

of the notation c�1
i for the firm’s capital productivity. In general, if ci < cj we will refer

to firm i as the “lower cost” or “efficient” producer, and firm j as the “higher cost” or

“inefficient” producer.

Equation (2) implies

Ri .Kt ; Xt/

Ki
t

D c�1
i

�
Xt

��� 0Kt

�


� �; (3)

or that firms’ unit operating profits are affine in the price of the industry good. This relaxes

the standard assumption in the literature, made for analytic tractability, that unit operat-

ing profits are linear in the price of the industry good. The standard linear specification

results from assuming capital is costless to operate, or from assuming a Cobb-Douglas

“putty-putty” production technology that allows firms to substitute into costless factors of

production when revenues decline. The affine specification presented here, which allows

for the possibility of operating losses, results from assuming a “clay-clay” investment tech-

nology, in which the capital/labor ratio is fixed (i.e., a Leontief production function), so
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factor substitution is not possible.12

Finally, each firm’s capital stock changes over time for three reasons: depreciation,

investment, and disinvestment. In the absence of investment, the capital employed in pro-

duction has a natural tendency to decrease over time, due to depreciation. This depreciation

is assumed to occur at a constant rate ı � 0. Firms may also increase or decrease the capital

employed in production by investing or disinvesting. That is, at any time firms may acquire

and deploy new capital within the industry, or sell capital that will be redeployed outside

the industry. Firms can purchase new capital at the constant unit price of one, and sell at

the unit price ˛ < 1. The constant ˛ parameterizes the “reversibility” of capital. Capital

is more reversible when the parameter is high, fully reversible if ˛ D 1, and completely

irreversible if ˛ D 0.13 A round-trip sale-repurchase of capital entails a fractional loss of

1 � ˛, so we can interpret 1 � ˛ as the transaction cost associated with buying and selling

capital. The change in a firm’s capital stock, due to depreciation, investment, and disinvest-

ment can be written as dKi
t D �ıKi

t C dU i
t � dLit , where U i

t (respectively, Lit ) denotes

firm i’s gross cumulative investment (respectively, disinvestment) up to time t .

3 Investment

The value of a firm’s investment depends on the price of the industry good, and therefore

depends on the aggregate level of capital employed in the industry. As a consequence, the

value of a firm depends not only on how it invests, but also on how other firms invest.

Moreover, because each firm’s investment itself affects prices, any given firm’s investment

strategy affects the investment strategy employed by other firms.

12 Even more generally, the linear specification is consistent with multiple costly factors of production,

provided the level of these factors employed in production can be costlessly adjusted, and that there exists at
least one factor (e.g., capital) that is costless to operate. The affine specification is consistent with multiple
costly factors of production, the level of which can be costlessly adjusted, all of which entail flow costs to

operate.
13 Alternatively, we can associate ˛ with the cost of “laying-up,” or “mothballing,” production. With

this interpretation, ˛ D 0 describes an industry where the productive capacity of capital is irrevocably lost if
production is ever halted, while larger ˛s are associated with industries in which production may be suspended

and, at some cost, resumed.
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3.1 The Firm’s Optimization Problem

Firms are assumed to maximize discounted cash flows, so the value of firm i is given by

V i .Kt ; Xt/ D (4)

max
fdU i

tCs ;dL
i
tCsg

Et

�Z 1

0

e�rs
�

Ri .KtCs; XtCs/ds�dU
i
tCsC ˛dLitCs

�ˇ
ˇfdU �i

tCs ; dL
�i
tCsg

�

where fdU �i
t ; dL�i

t g is used to denote other firms’ investment/disinvestment at time t , and

the expectation is with respect to the risk-neutral measure.14

3.2 Equilibrium

The equilibrium we consider is characterized by firms with high shadow prices of capital

(i.e., efficient firms, and firms that internalize little of the price externality associated with

new production due to their small market shares) preempting, as cheaply as possible, the

preemptive investment of firms with lower marginal valuations of capital (i.e., larger, inef-

ficient firms).15 This “closed-loop” Markov perfect strategy generates Cournot behavior of

the long-run equilibrium path.16 Over time firms with relatively high marginal valuations

of capital add capacity, lowering their marginal valuations of capital. Eventually firms’

14 If we allow the purchase price of capital to follow the stochastic processes kt , then V i .Kt ; Xt / given by
equation (4) with Ri .KtCs ; XtCs/ds � dU i

tCs C ˛dLi
tCs replaced by Ri.KtCs ; XtCs/ds � ktCsdU i

tCs C

˛ktCsdLi
tCs , is a linear, homogeneous function of X



t and kt . It is trivial, consequently, to extend the

analysis in this paper to the case when kt is a geometric Brownian process. The analysis of the firms’ optimal

behavior follows that presented here, with the multiplicative demand shock Xt replaced with Yt D Xt =k
1=

t .

We can then capture, in a reduced form, the fact that in general equilibrium the cost of capital is linked to the
demand for capital. If the cost of capital is positively correlated with demand (i.e., if Cov.kt ; Xt / > 0), then
both capital costs and operating costs (e.g., labor costs) tend to be high when demand and prices are high,

and low when demand and prices are low. In this case it is more expensive to add capacity in an expanding
industry, and more difficult to profitably downsize in a contracting industry.

15 This class of equilibria is studied extensively in Novy-Marx (2007).
16 An “open-loop” (or “precommitment”) equilibrium is one in which players simultaneously precommit

to their entire path of play at the start of the game. These equilibria are really static, in the sense that players
make decisions at only one point in time. Because players employing open-loop strategies cannot alter their
behavior in response to off-equilibrium play by their opponents in the course of the game, even if it would

be optimal for them to do so, these equilibria raise concerns regarding dynamic consistency (i.e., sub-game
perfection). A “closed-loop” (or “feedback”) equilibrium is a Nash equilibrium in state-dependent strategies.
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capacities adjust to the point at which the shadow price of capital equates across firms. The

equilibrium paths of investment and goods market prices then agree exactly with those in

the “open-loop” equilibrium in which firms precommit to Cournot investment behavior at

the start of the game. That is, this natural Markov perfect equilibrium supports Cournot

behavior, despite the fact that the Cournot strategy, under which a firm only accounts for

the price externality associated directly with its own investment, does not itself support

a closed-loop equilibrium.17 Consequently, in order to convey the economic intuition for

firms’ behavior as simply as possible, we now present a heuristic description of firms’ be-

havior in the open-loop Cournot equilibrium. A formal description of firms’ behavior in

the closed-loop equilibrium follows.

3.2.1 Open-loop Cournot equilibrium

Suppose that firms, as in Leahy (1993) or Abel and Eberly (1996), invest when the price

of their output rises sufficiently high, to a level we will denote PU , and disinvest when

prices fall sufficiently low, to a level we will denote PL. Prices then never exceed PU or

fall below PL, as at these thresholds the very act of adding or removing capacity prevents

the price of firms’ output from pushing beyond these thresholds. Within this band firms

do not alter capacity, and prices change only due to demand shocks and the natural de-

preciation of capital, and consequently evolve as a geometric Brownian process with drift

� D 

�

�X C ı C .
 � 1/
�2

X

2

�

and volatility � D 
�X .

We expect that a firm’s marginal valuation of capital is the product of 1) its marginal

revenue products of capital and 2) the unit value of revenues given the equilibrium price

17 The equilibrium is not unique. The class of strategies in which firms with high marginal values of

capital preempt the investment of firms with low marginal values of capital includes members that produce
both Cournot and Bertrand investment behavior. The Pareto-dominant member of this class that satisfies
the Markov restriction yields Cournot outcomes. While this reasonable selection criterion argues in favor

of this particular outcome if firms play “preempting preemption” strategies, we are agnostic on the issue of
equilibrium selection more broadly. Even with the Markov restriction, the set of possible equilibria extends
beyond this class. For example, a “collusive” strategy, described in Novy-Marx (2007), supports shared

monopoly outcomes (this collusive behavior relies on a Markov punishment mechanism that is particularly
“active,” in the sense that it calls for an instantaneous tit-for-tat response to any deviation from equilibrium
play, and may be unattractive because it depends critically on the perfect information nature of the game).
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process. That is, we will guess that qi .Kt ; Xt/ � V iKi
.Kt ; Xt / may be written as

qi .K
i
t ; Pt / D RiKi

.Ki
t ; Pt / �.Pt/ (5)

where Ri .Ki
t ; Pt/ D Ki

tPt=ci is the firm’s revenue and �.Pt/ D E
hR1

0
e�.rCı/s PtCs

Pt
ds
i

is the unit value of revenue.

The firm’s revenue depends on its capital stock directly, because it uses the capital stock

to produce the revenue generating good, and indirectly, because the price of the industry

good depends, partly, on the firm’s production. The firm’s marginal revenue product of

capital, differentiating firm revenue Ri .Kt ; Xt / D Ki
tPt=ci with respect to Ki , is

Ri
Ki .K

i
t ; Pt/ D c�1

i Pt C c�1
i Ki

t
dPt

dKi
t

: (6)

We can then rewrite equation (5), the firm’s marginal value of capital, as

qi .K
i
t ; Pt/ D c�1

i Pt �.Pt/C c�1
i K

i
t
dPt

dKi
t

�.Pt/: (7)

The first term on the right hand side of the previous equation is the intrinsic value of new

capital. New capital adds to firm i’s value simply because new capital produces new rev-

enues. The second term is the portion of the price externality internalized by the firm.

New capital negatively impacts the revenues of the firm’s ongoing assets through its ef-

fect on prices. New production increases aggregate output, decreasing prices, and the firm

internalizes the negative price externality in proportion to its market share.

Differentiating the inverse demand function Pt D X


t S

�

t with respect to Ki

t gives

dPt

dKi
t

D �
 Pt

ciSt
, and substituting this into the previous equation together with Ki

t =ci D S it ,

and letting sit D S it =St , yields

qi .K
i
t ; Pt / D c�1

i

�

1 � 
sit
�

Pt �.Pt/; (8)
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which reflects the fact that the firm internalizes the price externality in proportion to its

market share, sit .

Now if
�

1 � 
s
j
t

�

=cj D
�

1 � 
sit
�

=ci for all i and j , then firms’ marginal valuations

of capital equate. Summing over firms, firms’ marginal valuations equate if and only if

their market shares satisfy

s
j
t D

c � .1 � 
=n/ cj


c
(9)

where we have used c � 1
n

Pn
kD1 ck to denote the equal-weighted industry average capital

requirement per unit of production. Assuming firms’ market shares satisfy equation (9), we

can rewrite a firm’s marginal value of capital as

q.Pt / D
�
1�
=n
c

�

Pt �.Pt/; (10)

where explicit dependence on j andK
j
t has been dropped because qj .K

j
t ; Pt/ D qk.K

k
t ; Pt /

for any j and k. Then all firms will be happy to invest at the investment threshold and disin-

vest at the disinvestment threshold, provided E
�R1

0
e�.rCı/sPsds

ˇ
ˇPt D PU

�

D c= .1 � 
=n/

and E
�R1

0
e�.rCı/sPsds

ˇ
ˇPt D PL

�

D ˛c= .1 � 
=n/, because at these thresholds the

marginal value of capital equals its purchase and sale prices, respectively,

q.PU / D 1 (11)

q.PL/ D ˛: (12)

3.2.2 Long-run closed-loop equilibrium behavior

We now explicitly describe firms’ equilibrium investment and disinvestment behavior on

the long-run equilibrium path. This is provided in Proposition 3.1. In order to avoid exces-

sive digression, the proofs of all propositions are left for the appendix A.18

18 The existing literature contains two important special cases of the model presented in this paper. We
should expect that the strategy here agrees with the known strategies in these special cases. Grenadier (2002)
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We assume, without loss of generality, that each firm’s production is “sufficiently effi-

cient,” satisfying the “long run participation constraint,”

ci < cmax �
c

1 � 
=n
(13)

where c � 1
n

Pn
jD1 cj is the equal-weighted industry average capital requirement per unit

of production.19 This guarantees that firms will choose to produce over the long run. If

equation (13) does not hold for some firm, then the firm’s capital cost per unit of production

is higher than the maximum the industry will support, and the firm will eventually choose

to exit the industry.

Proposition 3.1. There exists a Markov perfect equilibrium which supports the Cournot

outcome, and on the long-run equilibrium path:

1. Each firm produces in proportion to its “cost wedge,” the difference between its cap-

ital costs per unit of production and the maximum cost the industry will support,20

sit D
cmax � ci


cmax

: (14)

2. Firms invest and disinvest when goods prices reach the “upper” and “lower” thresh-

solves for the open-loop equilibrium when firms are homogeneous, capital is completely irreversible and does

not depreciate, and there is no operating cost to production. Abel and Eberly (1996) solve for the special case
of a single monopolistic firm when there is no operating cost to production. The solutions in these papers
are special cases of the more general solution presented here, as described in detail in the appendix (B, The

Limiting Cases).
19 The condition is satisfied trivially if, given the order set of firms’ unit costs c1 � c2 � ::: � cM , we

restrict attention to the first n firms where n � max
n

i 2 f1; :::; M gj ci < ci

1�
=i

o

for ci � 1
i

Pi
j D1 cj .

20

This condition may be stated, equivalently, in terms of firms’ capital stocks, which satisfy

Ki
t D

�
cmaxci � c2

i

cmaxc � c2

�
Kt

n

where c2 � 1
n

Pn
j D1 c2

j .
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olds

PU D
.1C  /cmax

….��1/
(15)

PL D
.˛ C  /cmax

….�/
; (16)

where

….x/ D
�

1 � �2

2.rCı/

�
y0.1/�y0.x/

y.x/

�

x
�

�; (17)

for � D 1
rCı��

, y.x/ � xˇp � xˇn where ˇp and ˇn are the positive and negative

roots of the quadratic equation associated with the time-homogeneous Black-Scholes

differential equation, �
2

2
x2 C

�

�� �2

2

�

x D rC ı, and � D PU=PL > 1 is uniquely

determined by

….�/

�….��1/
D

˛ C 

1C  
: (18)

The equilibrium investment and disinvestment thresholds’ dependence on capital’s re-

versibility is shown in Figure 1. The thresholds are shown as a fraction of the investment

threshold when capital is completely irreversible, P 0
U . As the value of disinvesting falls to

zero the investment threshold, as expected, approaches the investment threshold when capi-

tal is fully irreversible, while the disinvestment threshold falls to zero. At the other extreme,

and also as expected, as capital becomes fully reversible the investment and disinvestment

thresholds converge. The manner in which these thresholds diverge as the cost of reversibil-

ity becomes non-zero is, however, quite surprising, as originally noted by Abel and Eberly

(1996).21 Interpreting 1�˛, the loss associated with the round-trip sale-repurchase of cap-

21 This divergence may be less surprising to readers familiar with the literature on portfolio choice. It is
well known that even tiny proportional transaction costs generate a significant wedge between the portfolio

“trigger weights” at which a constant relative risk aversion investor will rebalance her holdings between risky
and risk-free assets, a result very similar to that presented here. See, for example, Davis and Norman (1990).
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Figure 1: Investment and Disinvestment Thresholds

The upper curve (bold) depicts the investment threshold, while the lower curve depicts the
disinvestment threshold, as a function of the reversibility of capital, and as a fraction of the
investment threshold when investment is irreversible. Parameters are r D 0:05, � D 0:03,
� D 0:20, ı D 0:02, and c D 1.

ital, as a transaction cost, then even small transaction costs lead to a significant inaction

region in which firms will neither invest or disinvest in response to demand shocks. For

example, in the figure a seemingly insignificant ten basis point transaction cost leads to an

18 percent spread between the investment and disinvestment thresholds. Adjustment costs

are not necessary for generating infrequent lumpy investment, as even a small transaction

friction generates a large region in which firm investment is non-responsive to changes in

average-Q.

4 Value and Expected Returns

Given the equilibrium behavior provided in Proposition 3.1, it is straightforward to calcu-

late a firm’s value and expected rate of return, as a function of the state of the economy as

summarized by goods market prices.
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4.1 Cross-Section of Average-Q

Firm i’s value consists of the capitalized value of profits expected to accrue to assets-in-

place, plus the value of the options to investment and disinvest. The firm’s value func-

tion must also satisfy the standard time-homogeneous Black-Scholes differential equation,

�PVP C �2

2
P 2VPP D .r C ı/V . Together these imply

Qi
t D

�
Pt�.Pt/

ci
�

�

r C ı

�

C ainP
ˇn

t C aipP
ˇp

t (19)

for some ain and aip. Here the first term represents the capitalized value of operating profits

expected to accrue to assets in place, while the second and third terms quantify the value

of the “real options” to increase or decrease the scale of production in the future.

The previous equation, taken with the differentiability of firm value at the investment

and disinvestment boundaries, implies the following proposition.

Proposition 4.1. Average-Q for firm i is given, as a function of the price of the industry

good, by

Qi
t D q.Pt / C �i

 

.q.Pt /C / C an

�
Pt

PL

�ˇn

C ap

�
Pt

PU

�ˇp

!

(20)

„ƒ‚…

shadow

price of

capital

„ ƒ‚ …

capitalized

rents to
deployed capital

„ ƒ‚ …

expansion

and contraction
options

where �i D cmax

ci
� 1 is firm i’s “excess productivity,” and

an D �
.1C / � �ˇp.˛ C  /

.
ˇn � 1/ y .�/
(21)

ap D
.˛ C  / � ��ˇn.1C  /
�


ˇp � 1
�

y .��1/
: (22)

Figure 2 depicts this relation between firms’ values and prices in the goods market.

A high cost (marginal) producer has an average valuation equal to the industry’s shadow
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price of capital. This firm invests when its average-Q equals one, the purchase price of

capital (right hand edge of figure 2), and disinvests when its average-Q equals the sale price

of capital (left hand edge of figure 2). More efficient producers, which capture rents on

both their current production and the production of future capital deployments, have richer

valuations.22 They invest and disinvest at the same critical goods-price levels, however,

because they internalize more of the price externality associated with investment due to

their greater market shares. This reduces an efficient firm’s marginal valuation of capital to

the point that it equates with the marginal valuation of less efficient firms.

This figure also suggests cash flows will help “explain” investment, even after control-

ling for Q, despite the fact that firms invest at the investment threshold precisely because

this is when marginal-q equals one. Average-Q is relatively insensitive to demand shocks

near the investment threshold (right hand edge of the figure), because firms’ expected en-

dogenous supply response to further positive demand shocks near the investment threshold

reduces the impact of these shocks on the unit value of capital. This makes it difficult to

identify demand shocks that elicit investment in the time-series of average-Q, conferring

explanatory power on cash flows in (misspecified) tests of a linear investment–cash flow

relation. Because average-Q is particularly insensitive to demand shocks near the invest-

22 The manner in which average-Q increases with productivity is consistent with the findings of Lindenberg
and Ross (1981), who report a positive correlation between average-Q and the Lerner index (the mark up on

goods prices over the marginal cost of production, scaled by goods prices). Using Li �
P �ci �

P
, a firm’s

excess efficiency may be expressed in terms of its market power, as �i D �cmax

.1�Li/P
� 1, which is increasing

in Li . That is, the model predicts that a firm’s average-Q is increasing in its market power. Refinements
suggest the sensitivity of Q to market power should be inversely related to the capital intensity within an

industry. In particular, the model predicts that the expected difference between the estimated slope coefficient
and intercept from a linear regression of firms’ market-to-books on their Lerner indices within an industry
should be roughly proportional to the ratio of capitalized operating costs to the replacement cost of capital.
Lindenberg and Ross estimate an unconditional slope and intercept of 3.10 and 1.03, respectively, which differ

by roughly two, consistent with aggregate estimates of the relative shares of labor and capital in production.
Lindenberg and Ross also find that, after controlling for market power, industry concentration does not

explain variation in average-Q. This is consistent with the cross-sectional predictions provided in proposition

4.1, and more generally with the equilibrium in this paper, in which firms earn “natural” (Ricardian) rents
from oligopoly, but not collusive rents.

The manner in which average-Q increases with productivity is also consistent with the findings of Smir-

lock, Gilligan and Williams (1984), who report a positive correlation between a firm’s average-Q and its
market share. Using si D cmax�ci


cmax

, a firm’s excess efficiency may be expressed in terms of its market share,

as �i D 
cmaxsi =ci , which is increasing in si (strongly, because ci and si are negatively correlated).
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Figure 2: Tobin’sQ in the cross-section

The figure depicts average-Q for three firms in an industry, as a function of the price of
the industry good. The bottom curve (dotted line) shows a high cost (marginal) producer
(ci D cmax), which has an average-Q equal to the industry’s shadow price of capital. The

middle curve (dashed line) shows the average firm in the industry (ci D C ). The top curve

(solid line) shows a low cost producer (ci D .C=cmax/C ). Other parameters are r D 0:05,

� D 0:03, � D 0:20, ı D 0:02, C D 1, � D 1, 
 D 1, H D 0:02, and ˛ D 0:25.

low cost producer

average cost producer

high cost producer

ment boundary for high cost, low book-to-market producers, our theory further predicts

that cash flows will “explain” more of value firms’ investment. A further discussion of

these predictions, which includes supportive empirical evidence, is left for appendix C.

4.2 Q-theoretic Characterization of the Equilibrium Behavior

The previous figure suggests an alternative characterization of firms’ equilibrium invest-

ment behavior, in which firms invest and disinvest when aggregate industry average-Q

reaches upper and lower thresholds. The characterization has two practical advantages: it

is particularly simple and intuitive, and may be formulated in terms of standard, observable
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economic variables.

The average-Q levels that coincide with investment and disinvestment depend on three

factors: 1) the expected cost of non-capital factors of production, which must be capitalized

into the investment decision, 2) the price-elasticity of demand for the industry good, and 3)

the Herfindahl index, a common measure of market concentration calculated by summing

the squared market shares of firms competing in the market.23

This alternative characterization is simplified by introducing the industry average cost

of production, defined as C � Kt=St .
24 Given the equilibrium distribution of firms’ ca-

pacities, C has the explicit formulation

C �
Pn

j D1 ccj �.1�
=n/c2
j

Pn
j D1 c�.1�
=n/cj

D n



�

c � .1 � 
=n/ c
2

c

�

: (23)

The industry’s Herfindahl index, defined asH �
Pn
jD1.S

j
t =St/

2, can be written, given

the equilibrium distribution of firm capacities, as

H D

n
X

jD1

�
c�.1�
=n/cj

Pn
kD1 c�.1�
=n/ck

�2

D 1



�

1 � .1 � 
=n/ C
c

�

: (24)

Rearranging the previous equation yields

C D

�
1 � 
H

1 � 
=n

�

c: (25)

23 The U.S. Department of Justice and the Federal Trade Commission use this index extensively when
evaluating mergers and acquisitions for potential anti-trust concerns. Markets in which H 2 Œ0:1; 0:18� are
considered to be moderately concentrated, and those in which H > 0:18 are considered to be concentrated.

Transactions that increase H by more than 0:01 points in concentrated markets presumptively raise antitrust
concerns under the Horizontal Merger Guidelines issued by the DOJ and the FTC.

24 Industry operating costs per unit of production are �Kt=St D �C , which is linear in C , motivating
the term “average cost of production.” This interpretation of C is problematic when � D 0. An alternative
interpretation that is valid even when � D 0, which we have eschewed because it is unwieldy, is that C is the

industry’s production-weighted average capital requirement per unit of production.
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That is, the average cost of production is proportional to the equal-weighted cost, and is

linearly decreasing in the Herfindahl index. It is also weakly less than the equal-weighted

cost, because H � 1=n.

Industry average-Q is the capital-weighted average of individual firm average-Q’s,

Q D
P

i KiQi=
P

i Ki , so may be written, using equation (20) and the definition of C , as

Qt D qt C

�

H

1 � 
H

�
 

.qt C  /C an

�
Pt

PL

�ˇn

C ap

�
Pt

PU

�ˇp

!

: (26)

Evaluating at the investment and disinvestment thresholds then gives the investment thresh-

olds in terms of aggregate industry average-Q, provided in the following proposition.25

Proposition 4.2. At the investment and disinvestment thresholds, industry average-Q sat-

isfies

QU D 1C
�
L
1�L

� �

1C  C an�
ˇn C ap

�

(27)

QL D ˛ C
�
L
1�L

� �

˛ C  C an C ap�
�ˇp

�

(28)

where L D 
H .

In the previous proposition L is used to denote 
H because 
H is the market Lerner

index (the fraction by which output-weighted average marginal cost falls below price in the

goods market) in the standard Cournot model. Care should be taken, however, as the market

power index in this economy, in which capital is costly and not completely reversible, does

not equal L. The market power index in this economy is, however, increasing in L, and we

will consequently refer to L as firms’ “pseudo market power.”26

25 Another advantage of this characterization is that while the explicit equilibrium behavior provided
in Proposition 3.1 depends on the assumed geometric Brownian multiplicative demand shock, the general
form of the characterization provided in Proposition 4.2 is independent of the specification of the time-

homogeneous diffusion process underlying demand.
26 In the case of fully reversible capital, and if we follow Pindyck (1987) and calculate the market power

index as L� D .P � FMC/=P where FMC is the “full marginal cost” of production, which includes the
Jorgensonian user cost of capital, then L� D L. A more general consideration of the relation between L�

and L is left for Appendix D.
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Note also that the participation constraint may be expressed simply in terms of the

industry average cost of production and pseudo market power, as cmax D C
1�L

.

4.3 Expected Returns

Equation (20), which specifies average-Q as a function of firm and industry characteristics,

can also be used to calculate explicitly the sensitivity of firm value to demand, providing a

means to study the relation between market-to-book and expected returns. The following

proposition relates firms’ risk factor loadings, and consequently their expected rates of

return, to the state of the economy, as summarized by prices in the goods market.

Proposition 4.3. The expected excess rate of return to firm i is ˇit�t where �t is the time-t

price of exposure to the priced risk factor (X ) and

ˇit D
1

ciQ
i
t

 

�Pt C C iˇn

�
Pt

PL

�ˇn

ˇn C C iˇp

�
Pt

PU

�ˇp

ˇp

!

(29)

where

C iˇn
D .
ˇncmax � ci / an � �PL

�
�ˇP ��

y.�/

�

(30)

C iˇp
D

�


ˇpcmax � ci
�

ap � �PU

�

��1���ˇn

y.��1/

�

: (31)

The explicit relation between risk-factor loadings and prices in the goods market given

in equation (29) is depicted in Figure 3, below. In normal times inefficient producers are

more exposed to the underlying risks in the economy, because the exposure of their rev-

enues to the risk factor is levered more by their high production costs. In good times,

however, they are relatively insulated from these risks, which are largely absorbed by the

capacity response resulting from firms’ competitive investment decisions. Efficient pro-

ducers remain exposed, however, because at these times they expand capacity in response
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Figure 3: Risk factor loadings in the cross-section

The figure depicts risk factor loadings for three firms in an industry, as a function of prices
in the goods market. The strongly arching dotted line shows a high cost (marginal producer,

ci D cmax), the dashed line the average firm in the industry (ci D C ), and the relatively flat

solid line shows a low cost producer (ci D .C=cmax/C ). Other parameters are r D 0:05,

� D 0:03, � D 0:20, ı D 0:02, C D 1, � D 1, 
 D 1, H D 0:02, and ˛ D 0:25.

high cost producer

average cost producer

low cost producer

to positive shocks, buying capital at a price that is lower than its average value to the firm.27

27 This figure contains the intuition behind the results of Kogan (2004), Zhang (2005) and Aguerrevere

(2006). Kogan considers a perfectly competitive economy, comprised completely of marginal producers.
Firms are more exposed to fundamental risks, and consequently expect higher, more volatile returns when
prices in the goods market, and firms’ values relative to book capital, are low. Zhang shows that both high op-

erating costs and operating inflexibility are required to generate a value premium, and these are the necessary
conditions for generating significant variation in the exposures of high and low cost producers to fundamental
risks. Aguerrevere argues that competitive industries should be riskier than concentrated industries in “bad”
times, but less risky in good times. Competitive industries “look like” high cost producers, deriving most of

their value from assets-in-place and little from future investment opportunities, and assets-in-place are highly
exposed to fundamental risks in normal times but insensitive to these risks in expansions.
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5 Cross-Section of Expected Returns

Using the results of the previous section, we can relate a firm’s required rate of return to its

valuation. Figure 4 depicts the unconditional relation between expected returns and book-

to-market, both within and across industries, and suggests our first set of empirical tests.28

While the model predicts that book-to-market and expected returns are strongly correlated

within an industry, it predicts that the relation between book-to-market and expected returns

is weak, and non-monotonic, across industries.

The upward sloping lines in Figure 4 show the relation between expected returns and

book-to-markets within industries. The solid line (top) depicts a growth industry, the middle

line (dashed) an average book-to-market industry, and the bottom line (dotted) a value

industry. Within industries the relation between expected returns and book-to-market is

strong and monotonic. Inefficient, high book-to-market firms earn higher returns than more

efficient, lower book-to-market firms.

The bold, hump-shaped curve shows the relation between expected industry returns and

industry book-to-market across industries. Industries that rely more on non-capital factors

of production have high market values relative to book capital, because rents that accrue to

non-capital factors of production contribute to market values without contributing to book

values. This variation in book-to-market is largely uncorrelated with firms’ risk exposures,

and thus not useful for predicting the cross-section of expected returns.

This provides a theoretical basis for Cohen and Polk’s (1998, hereafter CP) contention

that the value premium is largely an intra-industry phenomenon. Tests of these predictions

conducted here strongly support their main empirical result: return variation associated

with intra-industry difference in book-to-market is significantly priced, while that associ-

ated with industry difference in book-to-market is not.

28 Equations (20) and (29) specify firms’ book-to-markets and expected rates of returns conditional on

the state of the economy. Unconditional values are calculated by integrating over the economy’s stationary
distribution. Details are provided in appendix E.
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Figure 4: BM / expected return relation, in and across industries

The figure depicts the unconditional relation between expected excess returns and book-to-
market in three different industries, and across industries. The top curve (solid line) shows
the expected return / book-to-market relation in an industry that relies extensively on non-
capital factors of production (� D 2:5, which matches the average of the upper quintile
in the data), the middle curve (dashed line) shows an industry that employs average levels
of non-capital factors in production (� D 1), while the bottom curve (dotted line) shows
a capital intensive industry (� D 0:4, which matches the average of the bottom quintile in
the data). The bold line depicts the relation between expected excess industry returns and
industry book-to-market. Other parameters are r D 0:05, � D 0:03, � D 0:20, ı D 0:02,
L D 0:02, ˛ D 0:25, and � D 0:05.
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5.1 Book-to-market within and across industries

In order to test our model’s predictions that the relation between expected returns and book-

to-market is weak and non-monotonic across industries, but strong and monotonic within

industries, we perform separate sorts based on intra-industry book-to-market and industry

book-to-market. The first sort is used to identify value (inefficient) and growth (efficient)

firms within industries, while the second sort is used to generate value and growth indus-

tries.

The intra-industry sort each year assigns each stock to a portfolio based on the firm’s

25



book-to-market ratio relative to other firms in the same industry.29 For example, a firm

is assigned to the value portfolio if it has a book-to-market higher than eighty percent of

NYSE firms in the same industry. Each quintile portfolio consequently contains roughly

twenty percent of the firms in each industry. The industry sort each year assigns each stock

to a quintile portfolio based on the book-to-market of the firm’s industry.30

Table 1 provides average excess returns and results of time series regressions of the port-

folios’ returns on the Fama-French factors.31 Panel A shows that the intra-industry book-

to-market sort generates a significant return spread, and a high-minus-low strategy Sharpe

ratio higher than that generated by the straight book-to-market sort (0.583 vs. 0.537).

The Fama-French factors accurately price these portfolios.32 While the observed market

model root mean squared pricing error on the five intra-industry book-to-market portfolios

is 24.8 basis points per month, the observed three factor model root mean squared pricing

error is only 3.5 basis points per month.33

29 We form portfolios in June of each year, using accounting data we are certain was available at the time

of portfolio formation. Market equity is lagged six months (i.e., we use prices from the previous December),
in order to avoid taking unintentional positions in momentum. Sorts are based on New York Stock Exchange
(NYSE) break points. For book equity we employ a tiered definition largely consistent with that used by

Fama and French (1993) to construct HML. Book equity is defined as shareholder equity, plus deferred taxes
and minus preferred stock if these are available. Stockholders equity is as given in Compustat (annual item
216) if available, or else common equity plus the carrying value of preferred stock (item 60 + item 130)
if available, or else total assets minus total liabilities (item 6 - item 181). Deferred taxes is deferred taxes

and investment tax credits (item 35) if available, or else deferred taxes and/or investment tax credit (item 74
and/or item 208). Preferred stock is redemption value (item 56) if available, or else liquidating value (item
10) if available, or else carrying value (item 130). We also follow Fama and French in reducing shareholder

equity by postretirement benefit assets (item 330) if available, in order to neutralize discretionary differences
in accounting methods firms choose to employ under the Financial Accounting Standards Board’s statement
regarding employers’ accounting for postretirement benefits other than pensions (FASB 106). Results are not

sensitive to this adjustment.
30 That is, BMi �

P

j beij =
P

j meij , where beij and meij are the book and market equities of firm j in
industry i , respectively. The industries we employ are the Fama-French 49 (we assign only nine industries to
the middle quintile). Similar results are obtained defining industries by SIC code (2, 3, or 4 digit).

31 For the sake of parsimony we provide only value-weighted results. Equal weighting portfolio returns

yields qualitatively identical results for all tables in this paper, and generally strengthens them quantitatively.
32 Consistent with Lewellen (1999), these book-to-market sorted portfolios exhibit significant variation in

HML loadings, even after controlling for industry.
33 GRS (Gibbons, Ross and Shanken (1989)) tests strongly reject the null hypothesis that the market model

pricing errors are jointly zero (F5;397 D 4:35, p-value = 0.073%), but fail to reject the same null hypothesis

for the three factor model (F5;395 D 0:47, p-value = 80.0%). The market model performs particularly poorly
on the value-growth spread, mispricing the high-minus-low portfolio by 61.9 basis points per month, with a
test-statistic of 4.25, while the three factor alpha is only 1.9 basis points per month, with a test-statistic of

0.19.
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TABLE 1

EXCESS RETURNS, THREE-FACTOR ALPHAS AND FACTOR LOADINGS,

AND CHARACTERISTICS OF PORTFOLIOS SORTED ON BOOK-TO-MARKET

WITHIN AND ACROSS INDUSTRIES, JULY 1973 - JANUARY 2007

PANEL A: BOOK-TO-MARKET WITHIN INDUSTRY

FF3 alphas and factor loadings characteristics

re ˛ MKT SMB HML BM ME n

Low 0.427 0.031 1.039 -0.098 -0.300 0.31 1945 962

[1.64] [0.64] [87.83] [-6.34] [-16.96]

2 0.550 0.006 0.983 -0.089 0.068 0.53 1632 701

[2.47] [0.11] [70.16] [-4.89] [3.23]

3 0.655 0.046 0.966 -0.047 0.200 0.72 1104 721

[3.08] [0.81] [70.65] [-2.67] [9.76]

4 0.735 0.022 1.009 0.049 0.314 0.99 771 807

[3.33] [0.37] [70.39] [2.65] [14.60]

High 0.938 0.049 1.049 0.201 0.546 1.49 318 1168
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[4.09] [0.78] [70.08] [10.30] [24.33]

High-Low 0.511 0.017 0.011 0.298 0.846

[3.38] [0.19] [0.49] [10.50] [25.87]

Sharpe ratio (annual) of the high-minus-low strategy: 0.583

PANEL B: INDUSTRY BOOK-TO-MARKET

FF3 alphas and factor loadings characteristics

re ˛ MKT SMB HML BM ME n

Low 0.487 0.252 0.950 -0.126 -0.517 0.32 1205 1004

[1.82] [3.11] [48.89] [-4.99] [-17.76]

2 0.511 -0.104 1.082 -0.003 0.054 0.52 925 972

[1.97] [-1.07] [46.44] [-0.08] [1.55]

3 0.608 -0.036 1.058 -0.017 0.152 0.65 840 852

[2.46] [-0.39] [47.32] [-0.59] [4.53]

4 0.784 0.042 1.007 -0.100 0.462 0.81 1137 793

[3.45] [0.40] [40.00] [-3.07] [12.25]

High 0.579 -0.248 0.987 -0.008 0.607 1.10 1140 738In
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[2.73] [-3.31] [55.07] [-0.36] [22.58]

High-Low 0.091 -0.499 0.037 0.118 1.124

[0.47] [-4.64] [1.43] [3.51] [29.03]

Sharpe ratio (annual) of the high-minus-low strategy: 0.081

Source: Compustat and CRSP.
The table shows the value-weighted average excess returns (percent per month) to quintile

portfolios sorted on industry book-to-market and intra-industry book-to-market, results of time-
series regressions of these portfolios’ returns on the Fama-French factors, with test-statistics, and
time-series average portfolio characteristics.
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The inter-industry results, presented in Panel B, contrast strongly with the intra-industry

results presented in Panel A. Value industries do not provide significantly higher returns

than growth industries. This fact is hard to reconcile with Lettau and Wachter’s (2007)

duration-based explanation of the value premium. Value industries have shorter average

durations than growth industries, and their model consequently predicts that value indus-

tries should generate higher average returns than growth industries.

The return spread between value and growth industries in insignificant despite the fact

that value industries have significantly higher book-to-market ratios and HML loadings.34

As a result, HML significantly misprices these portfolios.35 The Fama-French factors

should not be used, therefore, to risk-adjust the returns to industry portfolios, or more gen-

erally to price portfolios formed on the basis of industry level variables.36 The adjustment

34 Similar results are obtained by independently double sorting stocks on intra-industry book-to-market and
industry book-to-market. Intra-industry value stocks (i.e., inefficient firms) yield higher returns than intra-
industry growth stocks (i.e., efficient firms) across industry book-to-market quintiles. At the same time, the

returns to firms in value industries are indistinguishable those in growth industries across intra-industry book-
to-market quintiles, despite differences in these firms’ book-to-market ratios and HML loadings. Detailed
results are provided in Appendix F.

35 While the observed root mean squared three factor model pricing error is as small as the observed root
mean squared market model pricing error, 16.7 versus 17.0 basis points per month, GRS tests strongly reject
the null hypothesis that the Fama-French pricing errors do not differ from zero (F5;395 D 4:44, p-value =

0.061%), while failing to reject the same null hypothesis for the market model (F5;397 D 1:60, p-value =
16.0%). The three factor model performs particularly poorly at pricing the value-growth spread. The three
factor alpha on the value-minus-growth strategy is -49.9 basis points per month, with a test-statistic of -4.64,
while the market model alpha is 24.9 basis points per month and insignificant (test-statistic equal to 1.36).

36 The average effect of HML is to misprice portfolios sorted by industry. Over the July 1973 to January
2007 sample period the three-factor root mean squared pricing error on the 49 Fama-French industry port-
folios is 32.4 basis points per month, and a GRS test strongly rejects that the pricing errors are jointly zero

(F49;356 D 2:21 for a p-value = 0.002%). By contrast, the market model root mean squared pricing error on
these same portfolios is only 23.6 basis points per month, and a GRS test fails to reject the hypothesis that
the true pricing errors are jointly zero (F49;358 D 0:91 for a p-value = 64.2%).

The difference in performance is largely driven by the three factor models’ mispricing of value and growth

industries, due to the tendency of HML to underprice (overprice) industries with high (low) book-to-market
ratios. The three factor model underprices value industries (e.g., textiles, automobiles, construction and
personal services), due to significant positive HML loadings, while overpricing growth industries (e.g., phar-

maceuticals), due to significant negative HML loadings.
Fama and French (1997) attribute the poor performance of the three factor model pricing the industry

portfolios partly to the fact that the HML loadings on the industry portfolios exhibit significant time-series

variation, while the tests impose fixed loadings over the sample period. They also note that poor industry
performance mechanically generates higher book-to-markets, inducing negative correlation between average
returns and average book-to-market over any sample. However, industries that performed as poorly as textiles

and automobiles over the sample period (e.g., consumer goods and computer hardware) without garnering
large HML loadings were not significantly mispriced by the three factor models.
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procedure of Daniels et. al. (1997) (hereafter DGTW), which uses characteristic-based

benchmark portfolios, addresses this issue by industry adjusting book-to-market in a man-

ner suggested by CP, and consequently accurately describes the average returns to these

portfolios.37 DGTW procedure’s success describing the average returns to the industry

book-to-market portfolios depends on the industry adjustment to book-to-market.38 An im-

plementation of the procedure that fails to industry adjust book-to-market performs poorly

describing these portfolios’ returns.

Interestingly, the dispersion in HML loadings across industries exceeds those within

industries despite the facts that 1) the dispersion in book-to-market within industries is

approximately twice that observed across industries, and 2) the intra-industry variation in

book-to-market is strongly associated with differences in expected returns while the varia-

tion in book-to-market across industries is not. This fact essentially guarantees the ineffi-

ciency of HML. The construction of HML ensures that the factor covaries positively with

the returns to a portfolio long value industries and short growth industries. This variation,

which can be hedged, is unpriced absent systematic variation in expected returns across

industries, tautologically.

These results suggest that a fundamental rethinking of the value premium is required.

The value premium is not driven by industry variation. It is driven, as predicted by the

model, by intra-industry variation in firms’ production efficiencies.

37 The average monthly DGTW adjusted return to the portfolio long value industries and short growth

industries is 0.3 basis points per month, and insignificant (test-statistic of 0.02). Despite this, HML loads
heavily on the DGTW adjusted returns (ˇHML D 0:783). The Fama-French three factor model consequently
significantly misprices the portfolio long value industries and short growth industries, “hedged” using the

benchmark portfolios of DGTW: the three factor alpha on the hedged long-short portfolio is negative 38.1
basis points per month, with a test-statistic of -4.31.

38 DGTW employ an industry adjustment suggested by Cohen and Polk (1998). They industry adjust a
firm’s log book-to-market by subtracting the log of the long-term industry average book-to-market of the

firm’s industry.
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5.2 Industry-Relative Book-to-Market

The sorts employed in Table 1 make it clear that intra-industry variation in book-to-market

is correlated with expected returns while inter-industry variation is not. The intra-industry

sort employed in the table is not, however, the most effective way to isolate the variation

correlated with expected returns. Figure 4 suggests that it is not the cardinal ranking of a

firm’s book-to-market within its industry per se that predicts the cross-section of returns,

but rather the extent to which a firm’s book-to-market exceeds (or falls short of) the book-

to-market of its industry.

That is, the model suggests that book-to-market relative to the book-to-market of other

firms in the industry will better identify those firms that load heavily on priced risk factors.

This motivates a simple, alternative univariate sorting methodology, whereby firms are as-

signed to portfolios on the basis of their industry-relative book-to-markets, i.e., sorted on

BMij=BMi , where BMij is the book-to-market of firm j in industry i and BMi is the

book-to-market of industry i .39;40 Cohen, Polk and Vuolteenaho (2003) employ this vari-

able in their decomposition of book-to-market variance into industry and intra-industry

components. Note that this sorting procedure does not guarantee industries equal repre-

sentation in the portfolios; industries with high cross-sectional variation in book-to-market

39 In an average year this sorting procedure assigns 53.5 percent of stocks to the same quintile portfolio as
the book-to-market sort. It assigns 32.6 percent of stocks to portfolios one different in cardinal ranking from
their assignment under the book-to-market sort, 11.3 percent to portfolios two different, and 2.5 percent to

portfolios three different. In occasionally (0.12 percent of firm-year observations) classifies growth stocks as
industry-relative value stocks or value stocks as industry-relative growth stocks.

40 Theory supports scaling by the industry book-to-market, i.e., the value, not equal, weighted average
book-to-market of firms in the industry. Asness, Porter and Stevens (2000) employ a similar measure, which

scales a firm’s book-to-market by the equal-weighted average book-to-market of firms in the same industry,
in their investigation of industry-relative characteristics. This measure biases inefficient producers with high
expected returns towards the neutral portfolio. In the extreme, imagine an industry that consists of a single,

efficient oligopolistic firm and a large number of inefficient, marginal producers. Scaling the individual firms’
book-to-markets by the value-weighted industry average results in marginal producers having the maximum
possible industry-relative book-to-market, while scaling by the equal weighted average results in these firms

having an industry-relative book-to-market of one (the expected average across industries). Empirical tests
confirm that scaling by industry book-to-market is more effective, in a Sharpe ratio sense, than scaling by
equal-weighted industry average book-to-market. Scaling book-to-market by the equal-weighted industry

average does improve the Sharpe ratio of the high-minus-low quintile strategy, but only one third as much as
the value weighted scaling procedure.
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will be overrepresented in both the value and growth portfolios, while industries with little

variation on book-to-market will be overrepresented in the neutral portfolio.41 Unlike the

straight book-to-market sorting procedure, however, the relative book-to-market procedure

does not bias the value (growth) portfolio towards high (low) book-to-market industries.

Table 2 provides average excess returns to quintile portfolios sorted on industry-relative

book-to-market, and results of time-series regressions of the portfolios’ returns on the

Fama-French factors. The Sharpe ratio of the high-minus-low strategy for the sort on

industry-relative book-to-market is significantly higher than for the straight book-to-market

sort, 0.74 versus 0.54. Approximately one quarter of this difference is due to a greater re-

turn spread between the high and low portfolios, and three quarters to the fact that returns

to the strategy are less volatile.

Despite the large difference in the Sharpe ratios of the two strategies, the Fama-French

factors price the industry-relative book-to-market sorted portfolios well. The three factor

root mean squared pricing error of the five portfolios is only 6.6 basis points per month,

compared to 26.1 basis points per month for the market model.42

Sorting on industry-relative book-to-market generates less spread in book-to-market

(as it must), because some high (low) book-to-market firms are average firms in high (low)

book-to-market industries. It produces greater variation, however, in average firm size;

firms with high book-to-market relative to their industries tend to be smaller. This is con-

sistent both with our model and the results presented in Table 1. The value effect seems to

be concentrated in small firms, at least in part, because size helps distinguish between firms

41 Wermers (2004) employs an industry adjustment when constructing the DGTW benchmark portfolios
available on his website (at http://www.smith.umd.edu/faculty/rwermers/ftpsite/Dgtw/coverpage.htm) that
generatees more equal industry representation across portfolios. Wermers sorts on a value measure con-

structed as the log of firm’s book-to-market scaled by the book-to-market of the firm’s industry, all scaled by

the cross sectional standard deviation of this measure within the industry, i.e., ln BM
ij �ln BM

i

�i.ln BM
ij �ln BM

i /
. The denom-

inator here represents an ad hoc adjustment that guarantees roughly proportional industry representation in

portfolios formed by sorting on the measure. Our theory argues against this adjustment.
42 GRS tests reject that the market model pricing errors are jointly zero (F5;397 D 5:88, p-value = 0.003%),

but fail to reject the same hypothesis for the three factor pricing errors (F5;395 D 1:29, p-value = 26.9%).
The market model alpha on the high-minus-low strategy is 65.1 basis points per month, with a test-statistic

of 4.47, while the three factor alpha is only 10.4 basis points per month and insignificant (test-statistic equal
to 1.20).
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TABLE 2

EXCESS RETURNS, THREE-FACTOR ALPHAS AND FACTOR

LOADINGS, AND CHARACTERISTICS OF PORTFOLIOS

SORTED ON INDUSTRY-RELATIVE BOOK-TO-MARKET

JULY 1973 - JANUARY 2007

FF3 alphas and factor loadings characteristics

re ˛ MKT SMB HML BM ME n

Low 0.386 -0.016 1.049 -0.098 -0.298 0.30 1810 944

[1.46] [-0.28] [78.13] [-5.62] [-14.81]

2 0.500 0.009 0.948 -0.144 0.030 0.54 2011 668

[2.34] [0.19] [85.94] [-10.06] [1.84]

3 0.721 0.105 0.997 -0.059 0.188 0.78 1359 699

[3.30] [1.96] [77.98] [-3.56] [9.80]

4 0.790 0.054 1.035 0.191 0.248 1.02 662 854

[3.36] [1.01] [80.67] [11.43] [12.89]

High 1.006 0.088 1.094 0.505 0.381 1.45 223 1219R
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[3.80] [1.35] [70.06] [24.88] [16.28]

H - L 0.620 0.104 0.045 0.603 0.679

[4.28] [1.20] [2.17] [22.28] [21.75]

Sharpe ratio (annual) of the high-minus-low strategy: 0.738

Source: Compustat and CRSP.
The table shows value-weighted average excess returns (percent per month) to portfolios

sorted on book-to-market scaled by industry book-to-market, results of time-series regres-
sions of these portfolios’ returns on the Fama-French factors, with test-statistics, and time-
series average portfolio characteristics.

that have high book-to-markets because they are less efficient, and are consequently more

exposed to economic risks, and firms that have high book-to-markets because they are in

high book-to-market industries.

The factor loadings of the high-minus-low strategy are consistent with the magnitude on

the variation in characteristics generated by the sort. The strategy loads less on HML, but

more on SMB, than the corresponding strategy using a straight book-to-market sort. The

strategy’s high Sharpe ratio is not, however, simply due to a fortunate rotation of the Fama-

French factors. We demonstrate this explicitly in section 7, when we consider implications

for investment strategies in greater detail.
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5.3 Parametric Tests

The previous section shows that industry-relative book-to-market correlates more strongly

with expected returns than does book-to-market. Parametric tests promote a stronger inter-

pretation. Fama-MacBeth (1973) regressions suggest that, from the perspective of predict-

ing the cross-section of returns, book-to-market is nothing more than a noisy measure of

the “true” predictive variable, industry-relative book-to-market.

The standard specification regresses returns on log book-to-market. We employ a sim-

ilar methodology, but first decompose log book-to-market into two pieces: a firm-specific

piece, which reflects differences in firms’ efficiencies and profitabilities, and an industry

component, which reflects the intensity with which capital is employed in a firm’s line of

business,

ln BMij D ln

 

BMij

BMi

!

C ln BMi : (32)

We then regress returns onto each of these variables separately, and also onto log book-to-

market and log industry-relative book-to-market jointly.

If log book-to-market is really just a noisy measure of the true predictive variable,

industry relative book-to-market, then the coefficient on “the noise,” log industry book-to-

market, should be insignificant. The coefficient on the true predictive variable, log industry

relative book-to-market, should exceed that on the noisy measure of the true predictive vari-

able, log book-to-market, both in magnitude and significance. Moreover, the true predictive

variable should drive the noisy measure of the predictive variable out of the regression, i.e.,

a regression of returns on both log book-to-market and log industry book-to-market should

yield an insignificant coefficient estimate on log book-to-market.

Table 3, which reports Fama-MacBeth regression results, supports all of these predic-

tions. Specification (1) shows the standard result, that log book-to-market predicts returns

in univariate regressions. Specification (2) fails to reject that log industry book-to-market
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TABLE 3

FAMA-MACBETH REGRESSIONS RESULTS

rtj D ˛ C ˇ̌̌ 0xtj C �tj

slope coefficients and [test-statistics]

under alternative specifications

variables in xtj (1) (2) (3) (4)

lnBM
ij
t�1 0.480 0.031

[6.02] [0.17]

lnBM i
t�1 -0.117

[-0.69]

ln

�

BM
ij
t�1

BM i
t�1

�

0.564 0.528
[9.37] [3.60]

Source: Compustat and CRSP.
The table reports the results of Fama-MacBeth regressions of

firm returns (measured in percent) on log book-to-market, log in-
dustry book-to-market, and log industry-relative book-to-market.
The sample period covers July 1973 through January 2007.

is uncorrelated with expected returns. Specification (3) shows that a univariate regression

of returns on industry-relative book-to-market yields both a larger and more significant

coefficient estimate than the regression that employs the common measure of book-to-

market. Specification (4) shows that book-to-market fails to explain any of the cross sec-

tion of expected returns after controlling for industry-relative book-to-market: including

log industry-relative book-to-market as an explanatory variable forces log book-to-market

completely out of the regression.43 These results are all consistent with the hypothesis

that book-to-market derives its power to predict the cross-section of returns solely from its

correlation with the “true” predictive variable, industry-relative book-to-market.44

43 In specification (4) the lower test-statistic on industry-relative book-to-market reflects the relatively high
correlation between book-to-market and industry-relative book-to-market. Industry-relative book-to-market

explains 79.2 percent of the within-year cross-sectional variation in book-to-market over the sample period.
44 The value measure employed in the Wermers (2004) implementation of the DGTW procedure performs

poorly in these regressions, even relative to canonical log book-to-market. In univariate regressions the slope
coefficient on this variable is 0.435, with a test-statistic of 3.48.
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6 Efficiency of HML

The results of Section 5 suggest that HML has both a priced and an unpriced component.

The priced component appears to be related to variation in firms’ efficiencies, identifiable as

differences in book-to-market ratios within industries. The unpriced component appears to

be related to industry variation, which affects book-to-market ratios but is largely unrelated

to differences in expected returns. This implies that HML is not mean-variance efficient,

and provides guidance for constructing alternative value factors that may be closer to the

efficient frontier.

We now construct two alternative factors. The first is based on a simple univariate

sorting procedure that is no more complicated than the construction of HML. The second

uses a two-stage procedure, which attempts to strip the unpriced component out of HML

in order to produce a cleaner exposure to the priced component. Both of these alternative

value factors carry Sharpe ratios twice that of HML.

Our first, preferred, procedure employs the identical methodology that Fama and French

use to construct HML, except that our value sort is based on industry-relative book-to-

market, not book-to-market.45 This industry relative factor HML� has a Sharpe ratio twice

that of HML (1.09 versus 0.54), due both to its higher average returns (57.6 versus 47.9

basis points per month) and lower standard deviation (1.83 versus 3.08 percent per month).

HML� prices HML well, but has a significant positive alpha relative to the Fama-French

factors (26.7 basis points per month with a test-statistic of 4.73). Its monthly correlation

with HML is 68.6 percent.

Our second, more complicated strategy, constructs separate intra-industry (priced) and

inter-industry (unpriced) factors, then uses the unpriced factor to remove as much of the un-

45 That is, we begin by constructing six value weighted portfolios using the intersection of two size port-
folios (stocks above and below the size of the NYSE median) and three book-to-market portfolios (firm
book-to-market divided by industry book-to-market below the 30th percentile of NYSE industry-relative

book-to-market, between the 30th and 70th percentiles, and above the 70th percentile). The factor, HML�,
is then constructed as 1/2 (small value - small growth + large value - large growth). For comparison, HML
replicated using this methodology in the same sample is 99.3 percent correlated with the monthly HML series

posted on Ken French’s website, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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priced variation from the priced factor as possible. To do so, we again employ the method-

ology of Fama and French to construct two alternative versions of HML, one based on intra-

industry book-to-market (HMLN) and one based on industry book-to-market (HMLX).

These employ the same definitions used in the sorts of Table 1. Our second factor, HMLC,

is the part of intra-industry HML that is orthogonal to inter-industry HML, i.e., HMLC D

HMLN � ˇHMLX. The strategy is basically long a dollar of inefficient firms (i.e., intra-

industry value stocks), and short a dollar of efficient firms (i.e., intra-industry growth

stocks), hedged by buying 50 cents of growth industries and selling 50 cents of value in-

dustries.46 The Sharpe ratio of this orthogonalized intra-industry value factor, HMLC, is

again twice that of HML (1.13). The high Sharpe ratio here is driven exclusively by the low

volatility of the strategy (it returns 43.9 basis points per month, with a standard deviation

of only 1.34 percent per month).47 It has a significant positive alpha relative to the Fama-

French factors (30.7 basis points per month with a test-statistic of 5.30), and is relatively

weakly correlated with HML (32.4 percent at the monthly frequency).

Figure 5 shows the time series of returns to the three strategies. The figure depicts

trailing one year average monthly returns to HML, HML� and HMLC. The fact that HML

is more volatile than HML�, and much more volatile than HMLC, is readily apparent in

the figure. The trailing one year average returns to these alternative factors follow roughly

the same basic trends as HML, exhibiting significantly higher correlations with HML at the

annual frequency (81.4 percent for HML�, and 49.7 percent for HMLC) than they do at the

monthly frequency.

As noted previously, while HML� generates a significant positive alpha with respect

to the Fama-French factors, it prices HML, either alone or in conjunction with MKT and

46 HMLX explains 54.6% of the variation in HMLN. One potential explanation for the relatively high
correlations between the two factors is that the industry definitions are too course. If so, then sorting on

book-to-market within an “umbrella” industry still yields a value (growth) portfolio biased toward firms in
high (low) book-to-market industries under the umbrella.

47 Individually, the intra-industry factor HMLN yields 51.1 basis points per month, with a standard devi-

ation of 2.22 percent per month, giving it an annual Sharpe ratio of 0.80. The industry factor HMLX yields
14.2 basis points per month, with a standard deviation of 3.56 percent per month, giving it an annual Sharpe
ratio of 0.14. The two factors monthly correlation is 79.7%.
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Figure 5: Average Monthly Returns to Value-Minus-Growth Strategies

The figure shows one year trailing average monthly returns to three different value-minus-
growth strategies. The blue (darkest) path is Fama and French’s HML. The green (next
darkest) path (HML�) results from replicating the Fama-French procedure for constructing
HML using industry-relative book-to-market. The red (lightest) path (HMLC) is the part of
HML constructed using intra-industry book-to-market not explained by HML constructed
using inter-industry book-to-market.

SMB. Moreover, it does a “better” job than HML pricing the 25 intra-industry book-to-

market / industry book-to-market sorted portfolios of Table 6. Using HML� instead of

HML in conjunction with MKT and SMB yields an observed root mean squared pricing

error for the 25 portfolios of 21.1 basis points per month, compared to 21.7 basis points per

month for the Fama-French model and 32.1 basis points per month for the market model.

GRS tests reject the hypothesis that the pricing errors are jointly zero for all three models,
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but the rejection is least emphatic for the model that includes HML�.48

More surprising, HML� also does a “better” job pricing the 25 Fama-French book-to-

market / size portfolios, which are constructed using the same sorting criteria used in the

construction of HML. Using HML� instead of HML in conjunction with MKT and SMB

yields an observed root mean squared pricing error for these 25 portfolios of 14.7 basis

points per month, compared to 15.3 basis points per month for the Fama-French model and

41.7 basis points per month for the market model. While GRS tests reject that the pricing

errors are jointly zero for all three models, the rejection is again least emphatic for the

model that includes HML�.49

7 Investment Perspective

As noted previously, HML� seems to both price HML and have a significant positive alpha

relative to the Fama-French factors. Here we consider how the inclusion of this factor

affects the investment opportunity set.

7.1 Ex-Post Sharpe Ratios

Table 4 shows the risk-reward trade-offs available to investors who can take positions in

the three Fama-French factors and the industry-relative value factor HML�, all of which

represent viable trading strategies. The table reports the maximum ex post Sharpe ratio and

the weights in the corresponding tangency portfolios constructed using subsets of the four

factors, over the sample period July 1973 to January 2007.

48 F25;375 D 1:95 for a p-value = 0.457% for the model that includes HML�, compared to F25;375 D 2:36
for a p-value = 0.031% for the Fama-French model, and F25;377 D 2:76 for a p-value = 0.002% for the market
model. The average R-squared for the 25 portfolios is 74.5% for the model that includes HML�, compared
to 77.9% for the Fama-French model (and 70.1% for the market model).

49 F25;375 D 2:17 for a p-value = 0.115% for the model that includes HML�, compared to F25;375 D 2:70
for a p-value = 0.003% for the Fama-French model, and F25;377 D 3:70 for a p-value = 0.000% for the market
model. The average R-squared for the 25 portfolios is 87.6% for the model that includes HML�, compared to
91.2% for the Fama-French model (and 71.9% for the market model). The difference is largely driven by the

large, high book-to-market portfolios; HML� does not covary as strongly with the returns to big value stocks
as does HML.
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TABLE 4

EX POST MEAN-VARIANCE EFFICIENT

PORTFOLIOS WEIGHTS (%)

AND SHARPE RATIOS (ANNUAL),

JULY 1973 - JANUARY 2007

INCLUDED ASSETS

MKT SMB HML HML* Sharpe Ratio

100 0.41

100 0.54

100 1.09

27.59 19.37 53.04 0.99

18.55 81.45 1.29

Source: Compustat and CRSP.
The table shows portfolio weights (in percents) and re-

alized Sharpe ratios (annual) for various subsets of the
three Fama-French factors (MKT, SMB and HML) and the
industry-relative value factor (HML�).

Here it is immediately apparent that the high Sharpe ratio associated with the industry-

relative book-to-market high-minus-low strategy is not simply due to a rotation in the

Fama-French factors. The realized Sharpe ratio on HML� alone exceeds that achieved with

the ex post optimal combination of the Fama-French factors (1.09 versus 0.99).50 More-

over, allowing an investor to trade in the market as well as HML� significantly improves the

investment opportunity set. Amazingly, an 80/20 mix of just HML� and MKT performs

better over the 35 year sample period than the ex post optimal combination of the three

Fama-French factors plus momentum (1.29 versus 1.27).51

50 While HML� does not simply result from a rotation of the Fama-French factors, it does largely subsume
SMB. Tangency portfolios that include both HML� and SMB typically take small short positions in SMB,

which have little effect on the portfolio’s Sharpe ratio.
51 HML� also works well in conjunction with UMD. A roughly 1/6-1/6-2/3 mix of MKT, UMD and

HML� generated a Sharpe ratio of 1.54 over the sample period. Using a UMD-like momentum factor that
also controls for industry effects, “UMD�,” further increases the three factor Sharpe ratio to 1.72. UMD�

is constructed using the same procedure used to construct canonical UMD, except that past performance
is defined relative to the value-weighted returns to firms’ industries, i.e., firms are sorted on the basis of
r ij � r i , where for each i 2 findustries (Fama-French 49)g, r i �

P

j meij r ij =
P

j meij , where r ij and

meij are the returns and market capitalization of firm j in industry i . Asness, Porter and Stevens (2000)

consider a similar measure, which employs equal rather than value weighted industry returns. Asness, Porter
and Stevens find, consistent with our results but contrary to those of Moskowitz and Grinblatt (1999), that
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7.2 Spanning Tests

These spanning tests regress a “test” strategy’s returns on the returns to one or more “ex-

planatory” strategies. The intercept’s test-statistic is the information ratio of the test strat-

egy benchmarked to the mimicking portfolio constructed from the explanatory strategies.

An insignificant intercept suggests an investor could achieve statistically identical expected

returns, while exposing herself to less volatility, trading only in the explanatory strategies.

A statistically significant intercept suggests the test strategy improves the investment op-

portunity set, and consequently contributes significant information.52

Table 5 reports results from spanning tests, employing HML, HML� and UMD as test

assets. Intercepts are reported in basis points per month, and test-statistics are reported in

square brackets.

Panels A and B examine the relation of Fama and French’s value factor, HML, and our

industry relative value factor, HML�, to the covariance structure of asset returns. Panel

A shows that HML appears to be within the span of Fama and French’s MKT and SMB

and the industry relative value factor HML�. Panel B shows that the converse is false;

HML� resides outside the span of the Fama-French factors, or the Fama-French three plus

momentum. In fact, Panel C shows that HML� is as far outside the span of the Fama-French

factors as is UMD (information ratios of 4.73 and 4.43, respectively). All of these results

hold in both early and late subsamples.

momentum is stronger within industries than it is across industries.
52 For example, the three Fama-French factors span long-run reversals, because the abnormal returns to

“contrarian” strategies, which buy long-term losers and sell-long term winners, are insignificant relative to

the Fama-French factors. A strategy that only takes positions in the Fama-French factors therefore gener-
ates statistically identical expected returns, without exposing an investor to the residual variance from the
regression of the contrarian strategies’ returns on the Fama-French factors. Conversely, momentum is “out-

side” the span of the Fama-French factors, because no combination of the Fama-French factors “explains”
the abnormal returns to momentum, in the sense that momentum generates a large, significant three-factor
alpha. Adding momentum to the Fama-French factors consequently significantly improves the investment

opportunity set.
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TABLE 5

SPANNING TESTS: ˛S (BASIS POINTS PER MONTH)

FROM REGRESSIONS OF THE FORM yt D ˛ C ˇ̌̌ 0xt C �t

Sub-periods

July 1973 - July 1973 - April 1990 -

Independent Variables (x) January 2007 March 1990 January 2007

Panel A: HML as the dependent variable (y)

MKT, SMB, HML* -4.8 -12.4 2.4

[-0.53] [-1.57] [0.16]

Panel B: HML* as the dependent variable (y)

MKT, SMB, HML 26.7 18.9 31.1

[4.73] [3.27] [3.73]

MKT, SMB, HML, UMD 28.0 21.7 31.1

[4.84] [3.70] [3.64]

Panel C: UMD as the dependent variable (y)

MKT, SMB, HML 96.0 92.7 111.1

[4.43] [3.57] [3.25]

Source: Compustat and CRSP.
The table reports intercepts (basis points per month) from time-series regressions of

the returns to three trading strategies, HML, HML� and UMD, on various subsets of the
three Fama-French factors (MKT, SMB and HML), momentum (UMD), and the industry-
relative value factor HML�. Test-statistics are provided in brackets.

8 Conclusion

We include heterogeneity and operating leverage in a tractable, equilibrium model, and

characterize firms’ investment strategies explicitly in a Q-theoretic framework, in terms

of extensively studied, observable economic variables commonly employed in industrial

organization. The model predicts that expected returns and book-to-market are strongly

correlated within industries, but almost uncorrelated across industries, i.e., that the value

premium is driven by intra-industry differences in firms’ production efficiencies, not by

cross-industry differences in firms’ dependence on bricks-and-mortar. Empirical analysis

strongly supports these predictions.

These results have important implications for investors. Investment strategies suggested
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by the model significantly improve the investment opportunity set relative to the three factor

model and momentum. Over the sample from June 1973 to January 2007, the Sharpe ratio

available to investors with access to just three assets– the market and value and momentum

factors constructed using a procedure suggested by our model– exceeded that which could

have been achieved using the three Fama-French factors and momentum by over 35 percent.

Finally, the model provides a rich, tractable environment for generating further em-

pirical predictions. The model has implications for the interpretation of investment-cash

flow sensitivity regressions. It makes additional, unexplored predictions relating the cross-

section of asset returns to industry organization. It also suggests a role for HML as a

“pseudo”-factor that helps identify stocks that both load heavily on risk factors uncondi-

tionally, and load disproportionately heavily on risk factors when the price of risk is high.

A Proofs of Propositions

Proof of Proposition 3.1

Lemma A.1. SupposeX
.1;v/
t is a drifted geometric Brownian process between an upper reflecting

barrier at v and lower reflecting barrier at 1, and let Tv D minft > 0jX
.1;v/
t D vg and T1 D

minft > 0jX
.1;v/
t D 1g denote the first passage times to the upper and lower barriers, respectively.

Then

EuŒe�.rCı/T1I T1 < Tv� D
y.u=v/

y.1=v/
(33)

EuŒe�.rCı/TvI Tv < T1� D
y.u/

y.v/
(34)

where y.x/ D xˇp �xˇn as in Proposition3.1, ExŒf .Xt /� � E Œf .Xt / jX0 D x� and E Œ�.!/IA��

E Œ�.!/11A.!/� for 11A.!/ D 1 if ! 2 A and 11A.!/ D 0 otherwise.

Proof of lemma: The state prices, discounting at r C ı, for the first passage of the process to the

upper and lower barriers may be written as

Eu
h

e�.rCı/Tv

i

D Eu
h

e�.rCı/TvI Tv < T1

i

C Eu
h

e�.rCı/T1I T1 < Tv

i

E1
h

e�.rCı/Tv

i

(35)

Eu
h

e�.rCı/T1

i

D Eu
h

e�.rCı/T1I T1 < Tv

i

C Eu
h

e�.rCı/TvI Tv < T1

i

Ev
h

e�.rCı/T1

i

:(36)
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Simultaneously solving the preceding equations, for Eu
h

e�.rCı/Tv I Tv < T1

i

and for

Eu
h

e�.rCı/T1I T1 < Tv

i

, using Eu
h

e�.rCı/Tv

i

D
�
u
v

�ˇp
and Eu

h

e�.rCı/T1

i

D uˇn yields the

lemma. �

Lemma A.2. The perpetuity factor for a geometric Brownian process currently at x with reflecting

barriers at a � x and b � x, which we will denote �
b

a
.x/, is a homogeneous degree-zero function

of a, b, and x jointly, and

u �
v

1
.u/ D �uC

�
y .u=v/

y .1=v/

�

.… .v/ � �/C

�
y .u/

y .v/

�
�

…
�

v�1
�

� �
�

v (37)

where � , ….�/, y.�/, ˇp , and ˇn are given in the Strategy Hypothesis.

Proof of lemma: Suppose X
.1;v/
0 D u 2 Œ1; v�, where X

.1;v/
t is a geometric Brownian process

between an upper reflecting barrier at v and lower reflecting barrier at 1. Then the value of the cash

flow e�ıtX
.1;v/
t discounted at r and starting at t D 0 is

u�
v

1
.u/ D Eu

�Z 1

0

e�.rCı/tX
.1;v/
t dt

�

D Eu

"
Z T1_Tv

0

e�.rCı/tX
.1;v/
t dt

#

C E1
�Z 1

T1

e�.rCı/tX
.1;v/
t dt I T1 < Tv

�

CEv
�Z 1

Tv

e�.rCı/tX
.1;v/
t dt I Tv < T1

�

(38)

D
�

u � EuŒe�.rCı/T1I T1 < Tv� � EuŒe�.rCı/TvI Tv < T1� v
�

�

C EuŒe�.rCı/T1I T1 < Tv� ….v/C EuŒe�.rCı/Tv I Tv < T1� v….v
�1/

where � D 1
rCı��

is the perpetuity factor for a geometric Brownian process discounted at r C ı,

and

….v/ � E1
�Z 1

0

e�.rCı/tX
.1;v/
t dt

�

….v�1/ � v�1Ev
�Z 1

0

e�.rCı/tX
.1;v/
t dt

�

are the perpetuity factors for the reflected process when it is at the lower and upper barriers, respec-

tively. Simplifying equation (38) using Lemma A.1 completes the proof of the proposition, except

for the explicit functional form for ….v/ and ….v�1/.

To get the explicit functional form for….v/ and….v�1/, note that the smooth pasting condition
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implies

d
du
u�

v

1
.u/
ˇ
ˇ
ˇ
uD1

D 0 (39)

d
du
u�

v

1
.u/
ˇ
ˇ
ˇ
uDv

D 0; (40)

or

� C

�

ˇnv
ˇp � ˇpv

ˇn

�

.….v/ � �/C
�

ˇp � ˇn
�

v
�

….v�1/ � �
�

vˇp � vˇn
D 0 (41)

� C

�

ˇn � ˇp
�

vˇpCˇn�1 .….v/ � �/C
�

ˇpv
ˇp � ˇnv

ˇn

�
�

….v�1/ � �
�

vˇp � vˇn
D 0: (42)

Solving the previous equations simultaneously yields the explicit values for….v/ and….v�1/. �

Proof of the proposition: We begin by showing that Proposition 3.1 describes firms’ behavior in

the open-loop Cournot equilibrium. We then show that the strategy in which firms with the highest

marginal valuations of capital preempt, as cheaply as possible, the preemptive investment of firms’

with lower marginal valuations of capital yields investment and goods price dynamics that agree

exactly on the long-run equilibrium path.

The Bellman equation corresponding to firm i ’s optimization problem (equation (4)) is

rV i .K; X/ D Ri .K; X/� ıK � rKV
i.K; X/

C�XXV
i
X.K; X/C 1

2
�2XX

2V iXX.K; X/: (43)

This equation essentially demands that the required return on the firm at each instant equals the

expected return (cash flows and capital gains). It holds identically inKi , so taking partial derivatives

of the left and right hand sides with respect toKi yields

.r C ı/V i
Ki .K; X/ D Ri

Ki .K; X/ � ıK � rKV
i
Ki .K; X/

C�XXV
i
XKi .K; X/C 1

2
�2XX

2V i
XXKi .K; X/: (44)

Then using that V i.K; X/ is homogeneous degree one in K and in X , so qi .K; X/ � V i
Ki
.K; X/

is homogeneous degree zero in K and X , and that � D 

�

�X C ı C .
 � 1/�2
X
=2
�

and � D 
�X ,

we can rewrite the previous equation as

.r C ı/qi.P / D
�
1�
=n
c

�

P C �Pq0
i .P /C 1

2
�2P 2q00

i .P /: (45)
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It is then simple to check that the hypothesized qi.P / satisfies this differential equation. Given

the equilibrium distribution of firms’ capital stocks, marginal value of capital equates across firms

and is given, in equation (10), by qi .P / D q.P / D .1 � 
=n/ Pt �
PU

PL
.Pt/=c. Dividing both the

left and right hand sides of the previous equation by .1 � 
=n/ =c, we have that q.P / satisfies the

differential equation (45) if and only if

.r C ı/P�.P / D P C �P d
dP
.P�.P //C 1

2
�2P 2 d2

dP2 .P�.P // (46)

where we have, for notational convenience, suppressed the superscript .PL; PU / on the annuity

factor. The previous equation must hold for all P , so using the fact that

P�.P / D �P C aP ˇn C bP ˇp (47)

for some a and b (see, for example, equation (37)) and, matching terms of equal P -orders on the

left and right hand sides of equation (46), we then have that equation (45) holds if and only if

.r C ı � �/� D 1

.r C ı/ � .�� �2

2
/ˇn � �2

2
ˇ2n D 0

.r C ı/ � .�� �2

2
/ˇp � �2

2
ˇ2p D 0:

The previous equations all do hold, which is easily seen by substituting for � , ˇp and ˇn, so the

hypothesized q.P / satisfies the differential equation (45).

Using lemma A.2, the perpetuity factors for the equilibrium price process at the investment and

disinvestment boundaries are �.PU / D ….��1/ and �.PL/ D ….�/. Substituting these, along

with the hypothesized values for PU and PL given in equations (15) and (16), into firms’ marginal

value of capital, given in equation (10), we then have that q.PU / D 1 and q.PL/ D ˛. That q.Pt /

satisfies the smooth pasting condition at both boundaries, i.e., that q0
i.PU / D q0

i .PL/ D 0, follows

immediately from equation (10) and the construction of �
PU

PL
.Pt /.

53

Finally, the factor � is unique because the left hand side of equation (18) is decreasing on the

interval .0;1/, and takes the values 1 as � goes to 1 and 0 as � goes to 1.

53 As a technical point, any constant multiple of the hypothesized marginal value of capital, Oq.P / D
�q.P /, satisfies the differential equation given in equation (45), and the value matching and smooth pasting

conditions at the boundaries OPU D ��1PU and OPL D ��1PL. However, if we let k parameterize the
purchase price of capital (instead of normalizing it to one, as we have implicitly done in the rest of the paper),
then only the hypothesized q.P / goes to .1 � 
=n/ Pt �=c in the limit as in the limit as k ! 1 and ˛k ! 0.

That is, the hypothesized q.P / is the only one that equals the present value of expected marginal revenue
products of capital if firms are unable to invest or disinvest (i.e., satisfies the boundary condition in the limit
as capital becomes expensive, and irreversible).
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In the closed-loop equilibrium, firms still account for the direct impact of their investment on

goods market prices, but additionally consider the indirect impact this investment has by discourag-

ing other firms’ investment. Firms are willing to invest at lower goods market prices, because the

effective price externality of a firm’s new capital is reduced by its competitors response.

Firms still invest when their marginal valuation of capital exceeds the cost of capital, but the

shadow price of capital now accounts for the indirect impact new capacity has through the price

externality channel,

d
dki

�

S iP… � ki 
�

D dSi

dki

�

P � S i
�
dS
dSi

�
dP
dS

�

… �  

D c�1
i

�

P � S i
�

1C dS�i

dSi

�

P
S

�

…�  : (48)

Rearranging, firm i invests only if

�

1 � si
�

1C dS�i

dSi

�



�

P… � .1C  /ci ; (49)

i.e., when the value of a unit of new revenues (P…), reduced to account for the net price externality

(
�

1C dS�i=dS i
�


P…), which the firm only internalizes in proportion to its market share (si ),

equals or exceeds the firm’s lifetime cost of a unit of new revenues (.1C  /ci ).

A similar equation holds for each firm and, together with the analogous equations associated

with disinvestment, these can be used to characterize investment and disinvestment price profiles

P i
U
.s/ and P i

L
.s/, which describe the goods price levels at which each firm invests and disinvests,

as functions of the distribution of firms’ market shares.

These profiles are not unique. For example, Novy-Marx (2007) describes both “collusive” and

“perfectly competitive” solutions. The first of these generates a “shared monopoly” outcome, in

which firms extract the maximum consumer surplus, while the second yields investment when the

average value and the cost of capital equate, and firms consequently capture no consumer surplus.

The equilibrium we consider here is one in which the firm with the highest marginal valuation

of capital preempts the preemptive investment of other firms. Over time firms with high marginal

valuations of capital invest more, capturing market share, which lowers their shadow price of capital.

On the long run equilibrium path, firms’ marginal valuations of capital equate. Because we are only

interested in behavior on the long-run equilibrium path, we restrict ourselves here to an analysis

of the marginal conditions at the stationary distribution of firms’ capacities, s�, where each firm

produces in proportion to its “cost wedge,” si D cmax�ci


cmax
. For a detailed analysis of firms’ strategies

in this “preemption-preemption” equilibrium, please see Novy-Marx (2007).

Because, on the long run equilibrium path, firms’ marginal valuations of capital equate, all firms

invest at the same price level. That is, P iU .s
�/ D PU for all i . Additionally, a firm’s investment, on
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the margin, does not deter its competitors’ investment. If a firm invests to increase its market share,

it lowers other firms’ investment triggers by the same amount it lowers goods market prices: for each

j ¤ i ,
dP i

U

dsj

ˇ
ˇ
sDs� D �
PU

s�j , so
dP i

U

dkj

ˇ
ˇ
PDPU

D
�
dsi

dkj

�
dP i

U

dsj

ˇ
ˇ
sDs� D �
PU

cjS
D dP

dkj

ˇ
ˇ
PDPU

. Because

a firm’s marginal investment does not affect the investment of its competitors, dS
�i

dSi

ˇ
ˇ
sDs� D 0,

the marginal condition on investment in this closed-loop equilibrium agrees exactly with that in

the open-loop Cournot equilibrium. The firm’s marginal value of capital, given in equation (48),

reduces at the investment boundary to

qi
�

PU ; s
�
�

D c�1
i

�

1 �
�
cmax�ci


cmax

�



�

PU….�
�1/ �  D 1: (50)

Similarly, all firms disinvest, on the long run equilibrium path, at PL, and if a firm delays its disin-

vesting to increase its market share it raises other firms’ disinvestment triggers by the same amount

it raises goods market prices (i.e.,
dP i

L

dsj

ˇ
ˇ
sDs� D �
PL

s�j ). Consequently, the marginal condition on

disinvestment in this closed-loop equilibrium also agrees exactly with that in the open-loop Cournot

equilibrium. As a result, the paths of investment and goods market prices coincide in the two equi-

libria.

Proof of Proposition 4.1

Away from the investment boundary firms do not invests, and capacity is therefore insensitive to

changes in the multiplicative demand shock, so

dVi

dX

ˇ
ˇ
ˇ
ˇ
XDX�

U

D Ki

�
dP

dX

�
d

dP

 

�

c�1
i Pt�.Pt/ �  

�

C ain

�
P

PL

�ˇn

C aip

�
P

PU

�ˇp

! ˇ
ˇ
ˇ
ˇ
XDX�

U

D

Ki

X�

�

ˇna
i
n�
ˇn C ˇpa

i
p

�

; (51)

where the second equality follows from the facts that value of deployed capital is insensitive to

changes inX at the development boundary and dP
dX

D 
P=X .

At the boundary, homogeneity of the value function implies d
dX

Vi

Ki

ˇ
ˇ
XDX

C
U

D 0, and the supply

response ensures the price never exceeds PU so d lnKi

d lnX

ˇ
ˇ
XDX

C

U

D 1, so

d .Vi �Ki /

dX

ˇ
ˇ
ˇ
ˇ
XDX

C
U

D

�
Vi

Ki
� 1

�
dKi

dX

ˇ
ˇ
ˇ
ˇ
XDX

C
U

D
V �
i

�Ki

X�
: (52)

The value function is differentiable at the boundary, d
dX
Vi
ˇ
ˇ
XDX�

U

D d
dX

.Vi �Ki /
ˇ
ˇ
XDX

C

U

,
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which, using the results of the previous two equations, yields



�

ˇna
i
n�
ˇn C ˇpa

i
p

�

D QiU � 1; (53)

or, rearranging using the fact that �i
U

D 1C �i.1C  / where �i D cmax

ci
� 1, that

.
ˇn � 1/ ain�
ˇn C

�


ˇp � 1
�

aip D �i .1C  /: (54)

A completely analogous calculation at the disinvestment boundary implies

.
ˇn � 1/ ain C
�


ˇp � 1
�

aip�
�ˇp D �i.˛ C  /: (55)

Solving the previous two equations simultaneously yields

ain
�i

D
.1C  / � �ˇp.˛ C  /

.
ˇn � 1/
�

�ˇn � �ˇp
� (56)

aip

�i
D

.˛ C  / � ��ˇn.1C  /
�


ˇp � 1
� �

��ˇp � ��ˇn
� : � (57)

Proof of Proposition 4.2

Investment and disinvestment occur when the marginal value of deployed capital equals the

purchase and sale prices of capital, respectively, so the value of a firm is the expected discounted

revenue of its currently installed capital, less the discounted cost of operating the capital in perpe-

tuity,

Vi D SiP�.P / �Ki
�
rCı

: (58)

Substituting this into the equation for a firm’s average value of capital, and using the equilibrium

condition

q.P / D
�
1�
H

C

�

P�.P / � �
rCı

; (59)

yields the proposition. �

Proof of Proposition 4.3

Combining the valuation equation (equations (20)) with the explicit characterization of marginal-q

(equation (59) using the explicit characterization of P�.P / provided in equation (37)), together
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with the fact that ….�/PL D .˛ C  /cmax and …
�

��1
�

PU D .1C  /cmax, we have that a firm’s

average-Q is given by

Qit D
�Pt

ci
C C iˇn

�
Pt

PL

�ˇn

C C iˇp

�
Pt

PU

�ˇp

�  : (60)

After differentiating, the proposition then follows directly. �

B The Limiting Cases

The existing literature contains two important special cases of the model presented in this paper.

Grenadier (2002) derives the open-loop equilibrium behavior of homogeneous competitive agents

that make irreversible investment decision when operating costs are zero and capital does not de-

preciate. Abel and Eberly (1996) solve for the optimal investment and disinvestment decisions of

a monopolist when operating costs are zero. In this section we show that the solutions presented

in these papers are indeed special cases of the solution to the more general problem. That is, we

will show that the solution to the optimal investment/disinvestment problem with heterogeneous

competitive firms and costly reversibility, presented in this paper, reduces to the solutions presented

in these earlier papers in the special cases when 1) firms are homogeneous, capital is irreversible

and profits are linear (i.e., not more generally affine) in the demand variable; and 2) when there is a

single monopolistic firm and profits are linear in the demand variable.

B.1 Homogeneous Firms and Irreversible Investment

It is easy to see that the equilibrium behavior here reduces to that found in Grenadier (2002) in the

special case when 1) firms are homogeneous, with ci D 1 for all i 2 f1; 2; :::; ng; 2) capital is

completely irreversible, ˛ D 0; 3) capital does not depreciate, ı D 0; and 4) there is no operating

cost to production, � D 0. The optimal investment rule, given in Grenadier (2002) in equation (21),

on page 703, says, in the notation of this paper,54 that firms will invest when the demand process

reaches a capital-dependent multiplicative demand shock thresholdX�.S/ that satisfies

X�.S/



D

�
ˇp

ˇp � 1

��
n=


n=
 � 1

�

.r � �/S
 : (61)

54 The major notational differences are that: 1) Grenadier (2002) uses Q to denote supply (i.e., “quantity”),

whereas we use S (reserving Q for Tobin’s Q); 2) Grenadier uses 
 for the price-elasticity of demand,
whereas in this paper this elasticity is 1=
 ; and 3) Grenadier uses X to denote directly the stochastic variation
in prices, whereas in this paper X denotes the stochastic variation in quantity demanded at any given price.

That is, letting subscript G denote parameters in Grenadier (2002), QG D S , 
G D 1=
 and XG D X
 .
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The previous equation may be rewritten as

�
X�.S/

S

�


D
1

.1 � n=
/
�
ˇp�1

ˇp

��
1
r��

� : (62)

Finally, letting P � D .X�.S/=S/
 and using the fact that ….0/ D
ˇp�1

ˇp
� and � D 1

r��
when

ı D 0, the previous equation says

P � D
1

.1 � n=
/….0/
; (63)

which is the investment price threshold implied by equation (15) when c D 1 and ˛ D 0. That is,

the investment price threshold implied in Grenadier (2002) agrees with the special case here.

B.2 The Monopolist

To see that the solution presented in this paper reduces, in the case of a single monopolistic firm with

zero production costs, to that found in Abel and Eberly (1996), requires more work. This will be

simplified by first producing an alternative expression for the equilibrium marginal value of capital,

equation (10). We have, from proposition A.2 that

P�
PU

PL
.P / D P� C

�
y.P=PU /

y.PL=PU /

�

.….�/ � �/PL C

�
y.P=PL/

y.PU =PL/

�
�

….��1/ � �
�

PU : (64)

Substituting for y.�/ and ….�/ and grouping terms of equal P -orders yields

P�
PU

PL
.P / D P� �

�ˇp � �

ˇn
�

�ˇp � �ˇn
�PL

�
P

PL

�ˇn

�
� � �ˇn

ˇp
�

�ˇp � �ˇn
�PL

�
P

PL

�ˇp

: (65)

Then letting

�.x/ �
xˇp � x

xˇp � xˇn
(66)

the firm’s marginal value of capital, given in equation (10) as q.P / D .1 � 
=n/Pt �
PU

PL
.P /=c,

becomes

q.P / D

�
1� 
=n

c

��

P �
�.�/

ˇn
P
1�ˇn

L
P ˇn �

1 ��.�/

ˇp
P
1�ˇp

L
P ˇp

�

�: (67)

The solution in Abel and Eberly (1996) is that the firm will optimally invest or disinvest when-

ever y � X=K hits an upper threshold yU or a lower threshold value yL, respectively, where yL
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and yU are defined implicitly by q.yL/ D ˛ and q.yU / D 1, where

q.y/ D Hy
 �

H

˛N
�.G
 /y


�˛N

L
y˛N �


H

˛P
.1 ��.G
 //y


�˛P

L
y˛P ; (68)

˛P and ˛N are the positive and negative roots, respectively, of

�.�/ D �
�2

X

2
�2 �

�

�X �
�2

X

2
C ı

�

�C .r C ı/ D 0; (69)

H is given by

H D
1 � 


c�.
/
; (70)

and G satisfies

�.G/

G
�.G�1/
D ˛ (71)

for

�.x/ D
H

1� 


�

1 �



˛N
�.x
 / �




˛P

�

1 ��.x
 /
�
�

: (72)

Now y
 D .X=K/
 D P , so letting PL denote y


L

and PU denote y


U

, and using

˛P D 
ˇp (73)

˛N D 
ˇn (74)

�.
/ D r C ı � �; (75)

where � D 

�

�X C ı C .
 � 1/�2
X
=2
�

, equation (68) becomes

q.P / D

�
1 � 


c

��

P �
�.G
 /

ˇn
P
1�ˇn

L P ˇn �
1 ��.G
 /

ˇp
P
1�ˇp

L P ˇp

�

�; (76)

which looks exactly like equation (67), our alternative characterization of q, with n D 1, provided

G
 D � . To see that G
 is indeed � , note that

�.x/ D
�

1 � 1
ˇn
�.x
 / � 1

ˇp

�

1 ��.x
 /
�
�

�

D

�

1 �
ˇp.x
ˇp �x
/�ˇn.x
ˇn�x
/

ˇpˇn.x
ˇp �x
ˇn/

�

�

D ….x
 /; (77)
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so equation (71) says ….G
 /
G
….G�
 /

D ˛, and this, with G
 D � , is the defining equation for � in

Proposition 3.1. So the monopolist solution of Abel and Eberly (1996) agrees with the solution in

this paper with n D 1 and � D 0.

C Investment-Cash Flow Sensitivity and the Value Pre-

mium

Figure 2 suggests that cash flows will help “explain” investment, even after controlling for Q,

despite the fact that firms invest at the investment threshold precisely because this is when marginal-

q equals one. Moreover, the model makes the more refined prediction that cash flows will “explain”

more of value firms’ investment.

Average-Q is relatively insensitive to demand shocks near the investment threshold (right hand

edge of the figure), because firms’ expected supply response to further positive demand shocks

near the investment threshold reduces the impact of these shocks on the unit value of capital. Cash

flow shocks remain a good proxy for demand shocks, however, near the threshold, because prices

in the goods markets remain sensitive to demand. So while near the investment threshold positive

demand shocks, observable as cash flow shocks, elicit investment, they will not be associated with

corresponding shocks to average-Q. That is, as a result of firms’ optimal equilibrium investment

behavior, and the endogenous mean-reversion in profitability that this behavior generates, the impact

of demand shocks on average-Q is small near the investment threshold, while the impact of demand

shocks on cash flow remains large. So while it will be difficult to identify a demand shock that

elicits investment by looking at changes in average-Q, we will observe the shock in the cash flow

series.

Consequently, if we estimate the misspecified linear investment-cash flow relation,

CAPX it

Ait�1
D ai C at C bQit�1 C c

 

CF it

Ait�1

!

C �it ; (78)

we should expect to see a positive coefficient on CF=A, even though firms follow a Q rule for

investment. Note that there is no sense in which we are suggesting that the cash flow coefficient

may be interpreted as a firm’s marginal propensity to spend an extra dollar. The expected positive

coefficient on cash flows simply reflects the fact that, in the misspecified linear regression, cash

flows will help identify profitable investment opportunities.

Moreover, cash flows will be particularly useful in helping identify investment opportunities

when Q works particularly badly, i.e., for those firms for which Q is particularly insensitive at the
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investment boundary. Because the value of assets-in-place is insensitive to positive shocks at the

investment boundary, while growth options remain sensitive, Q should perform worse, and thus

cash flows better, for firms consisting primarily of assets-in-place. That is, the model predicts that

value firms should exhibit higher investment-cash flow sensitivities (i.e., a higher coefficient on cash

flows in the investment regression) than growth firms. To test this we run the modified investment

regression

CAPX it

Ait�1
D ai C at C bQit�1 C c

 

CF it

Ait�1

!

C d

 

CF it

Ait�1

!

� 11h
Q

i
high

i C �it ; (79)

where 11h
Q

i
high

i is an indicator that takes the value one if the time-series average Q of firm i

is above the median time-series average Q of the sample, and zero otherwise. The prediction of

investment-cash flow sensitivity that is more pronounced for value firms is then a prediction that the

cash flow coefficient c should be positive, and that the coefficient on cash flows interacted with the

indicator for growth, d , should be negative, i.e., that c > c C d > 0.

Table 5, below, shows summary statistics for the variables used to estimate equation (79) (Panel

A), and the results of the estimation (Panel B). The sample consists of all Compustat firm-years

between 1974 and 2005, inclusive, which have CAPX, CF, lagged assets, lagged Q and a market

capitalization of at least 10 million dollars. CAPX is Compustat annual data item 128 (Capital

Expenditures). Tobin’s Q is book assets (item 6) minus book equity (item 6 - item 181 - item 10

+ item 35) plus market equity (item 25 � item 199), all divided by book assets (item 6). Cash

flow is item 14 (Depreciation and Amortization) plus item 18 (Income Before Extraordinary Items).

Regression variables are Winsorized at the one and ninety-nine percent levels.

Our main result is found on the last two lines of Panel B. The coefficient on cash flows is four

times as high for the value half of the sample as it is for the growth half, 0.23 as opposed to 0.058.

The pattern is also observed in both the early and late halves of the sample (1974-1989 and 1990-

2005), though investment cash flow sensitivities are much lower in the second half for both types of

firms, perhaps reflecting the increasing importance of the service sector of the economy.55

55 The qualitative nature of this result is robust to alternative specifications. The cash flows coefficient is
significantly larger for value firms than growth firms in the fully interacted version of equation (79), in which

the growth indicator is interacted with all other regression variables. In an investment-cash flow regression
that includes the interaction of cash flow and Tobin’s Q, the coefficient on the interaction is negative, and
significant, implying investment-cash flow sensitivity is decreasing in market-to-book.
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TABLE 5

INVESTMENT-CASH FLOW SENSITIVITY

AND ITS RELATION TO VALUE

Panel A: Regression variable summary statistics

variable mean stn. dev. 1% 99%

CAPXt=At�1 % 9.13 9.99 0.16 60.71

Qt�1 1.90 1.72 0.60 11.45

CFt=At�1 % 7.03 17.31 -79.54 41.92

Panel B: Regression results

Fixed-effects (within) regressions # of obs = 100,877

R2 (within): 13.83% # of groups = 10,802

Full sample Subsamples

variable 1974-2005 1974-1989 1990-2005

b 0.0851 0.0.0207 0.0305
[42.46] [7.73] [21.47]

Qt�1 0.02403 0.0232 0.0112
[33.82] [17.65] [29.75]

CFt=At�1 0.2306 0.3298 0.1391
[21.16] [15.10] [13.38]

CFt=At�1 � 11ŒQ high� -0.1724 -0.0852 -0.1167
[-14.60] [-3.20] [-10.47]

Source: Compustat, 1973 - 2005.
The table shows summary statistics of the variables used in the investment

regression (Panel A) and results of the regression, with t-stats (Panel B). CAPX
is Compustat annual data item 128 (Capital Expenditures). Tobin’s Q is book
assets (item 6) minus book equity (item 6 - item 181 - item 10 + item 35) plus
market equity (item 25 � item 199), all divided by book assets (item 6). Cash
flow is item 14 (Depreciation and Amortization) plus item 18 (Income Before
Extraordinary Items). The regression includes year dummies (coefficients not
reported). Variables are Winsorized at the first and ninety-ninth percentiles.

D Market Power / Pseudo-Market Power Relation

The Lerner (market power) index, adjusted along the lines of Pindyck (1985) to account for the “full

marginal cost” of production, which includes the Jorgensonian user cost of capital, depends on the

price of the good and is given by

L�.Pt / D 1 � rCıC�

Pt=C
: (80)
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So the observed user cost-adjusted Lerner index is increasing in price, and L�.Pt / 2
�

L�
L
; L�

U

�

where

L�
U D L�.PU /

D 1 � .1 � L/.r C ı/….1=�/ � L (81)

L�
L D L�.PL/

D 1 � .1 � L/.r C ı/….�/
�
1C 
˛C 

�

� L; (82)

where the first inequality follows from….1=�/ � .rCı/�1 and the second from….�/ � .rCı/�1.

That is, the user cost-adjusted Lerner index is “pro-cyclical,” in that it is increasing in demand, and

lies in an interval that includes L D 
H .

E Stationary Distribution

Unconditional properties may be calculated by averaging over the economy’s ergodic distribution.

For example, the firm’s unconditional expected excess rate of return is the conditional expected

excess rate of return (the market price of risk scaled by the firm’s exposure to the risk factor,

rei .p/ D ˇi .p/�.p/, where the risk factor loading ˇi .p/ is given in Proposition 4.3) integrated

over the stationary distribution. Calculating unconditional properties consequently requires an ex-

plicit characterization of this distribution, which is provided in the following proposition.

Proposition E.1. The stationary density for the risk-neutral price process takes non-zero values

between PL and PU , where it is given by

d�.p/ D �

 

p��1

P
�
U

� P
�
L

!

dp (83)

for � D 2�

�2 � 1.

Proof of the proposition: Suppose Xt is a geometric Brownian process with drift � and volatility

� , and a lower reflecting barrier at l and an upper reflecting barrier at 1. Then

lim
t!1

t�1E

�Z t

0

11Œl;z�Xsds

�

D P ŒX < z� (84)

where 11A.!/ D 1 if ! 2 A and 11A.!/ D 0 otherwise, and X is has the stationary distribution of

the process Xt .
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If Yt is a geometric Brownian process with the same drift and volatility, also reflected above at

1 but unreflected below, then by the Markovian nature of the processes

Xt
d

D Yst (85)

where
d

D denotes “equal in distribution,” and st � minfsj
R s
0

11Œl;1�Ysds D tg. So

P ŒX < z� D P ŒY < zjY > l� (86)

D
P ŒY < z� � P ŒY < l�

1 � P ŒY < l�
: (87)

Finally, using the fact that a Brownian process with positive drift reflected from above at zero

has a stationary distribution that is exponentially distributed, with exponent equal to its drift divided

by half its volatility squared, we have that P ŒY < y� D y� where � D .� � �2=2/=.�2=2/.

Substituting this into the previous equation, and letting Xt D Pt=PU , l D PL=PU and z D

PT =PU , yields the stationary distribution for the equilibrium price process,

P ŒP < p� D
p� � P

�
L

P
�
U

� P
�
L

: (88)

Differentiating with respect to p yields the stationary density. �

F Additional Tests

It is useful, as a robustness check, to consider the interaction between industry book-to-market and

intra-industry book-to-market. Table 6 shows the results for portfolios sorted independently across

the two variables. Each portfolio has roughly the same number of firms, by construction. The

results across both industry and intra-industry book-to-market quintiles are consistent with those of

Table 1. While value firms generate higher returns than growth firms across industry book-to-market

quintiles, value firms in value industries do not produce higher returns than value firms in growth

industries, and growth firms in value industries do not produce higher returns than growth firms in

growth industries.

The three factor model helps price the intra-industry high-minus-low portfolios, improving the

observed root mean squared pricing error relative to the market model, 31.4 versus 66.0 basis points

per month. GRS tests reject the hypothesis that these pricing errors are jointly zero for both models,

though this rejection is less emphatic for the three factor model (F5;395 D 4:35, p-value = 0.072%

for the three factor model; F5;397 D 9:04, p-value = 0.000% for the market model).
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TABLE 6

EXCESS RETURNS, BOOK-TO-MARKET RATIOS, AND THREE-FACTOR ALPHAS

AND FACTOR LOADINGS FOR PORTFOLIOS DOUBLE SORTED ON BOOK-TO-MARKET

WITHIN AND ACROSS INDUSTRIES, JULY 1973 - JANUARY 2007

Monthly excess returns and BMs for Return characteristics of

portfolios sorted on industry BM the value industries-minus-

and within industry BM growth industries portfolios

Industry BM quintiles FF3 alphas and loadings

L 2 3 4 H re ˛ ˇ
mkt

ˇ
smb

ˇ
hml

L 0.396 0.362 0.548 0.473 0.489 0.093 -0.506 0.079 0.251 1.016
(0.19) (0.28) (0.33) (0.41) (0.54) [0.44] [-3.12] [2.04] [4.96] [17.42]

2 0.511 0.426 0.622 0.822 0.565 0.054 -0.446 0.015 0.144 0.944
(0.29) (0.45) (0.54) (0.67) (0.84) [0.28] [-3.12] [0.43] [3.23] [18.36]

3 0.676 0.505 0.679 0.961 0.548 -0.128 -0.607 0.053 -0.053 0.971
(0.41) (0.62) (0.71) (0.84) (1.06) [-0.61] [-3.84] [1.39] [-1.07] [17.10]

4 0.739 1.088 0.773 0.906 0.501 -0.239 -0.608 0.032 -0.437 0.988
(0.63) (0.84) (0.93) (1.06) (1.31) [-0.98] [-3.59] [0.78] [-8.27] [16.23]

H 1.006 1.104 0.795 1.333 0.782 -0.224 -0.455 0.048 -0.555 0.748

In
tr

a-
in

d
u

st
ry

B
M

q
u

in
ti

le
s

(1.12) (1.33) (1.41) (1.54) (1.91) [-1.00] [-2.80] [1.24] [-10.96] [12.83]

re 0.609 0.742 0.247 0.860 0.293
[2.74] [4.05] [1.53] [5.43] [1.73]

˛ -0.112 0.304 -0.048 0.618 -0.060
[-0.72] [2.03] [-0.31] [4.18] [-0.41]

ˇ
mkt

0.075 -0.041 0.021 -0.028 0.043
[2.01] [-1.14] [0.58] [-0.78] [1.22]

ˇ
smb

0.881 0.521 0.327 0.129 0.075
[18.29] [11.16] [6.85] [2.79] [1.63]

ˇ
hml

0.911 0.660 0.403 0.462 0.644

In
tr

a-
in

d
u

st
ry

H
-L

p
o

rt
fo

li
o

s

F
F

3
al

p
h

as
an

d
lo

ad
in

g
s

[16.42] [12.28] [7.32] [8.69] [12.10]

Source: Compustat and CRSP.
The table shows value-weighted average excess returns and book-to-market ratios (in parentheses) of

portfolios double sorted on intra-industry book-to-market and industry book-to-market, and results of time-
series regressions of both sorts’ high-minus-low portfolios’ returns on the Fama-French factors, with test-
statistics [in square brackets].

In contrast, the three factor model performs worse than the market model, or no model at all,

in explaining the industry high-minus-low portfolio returns. The observed three-factor root mean

squared pricing error is 52.9 basis points per month, versus 12.8 basis points per month for the

market model. GRS tests reject the hypothesis that the three factor pricing errors on these portfolios

are jointly zero (F5;395 D 6:34, p-value = 0.001%), but fail to reject the same hypothesis for the

market model (F5;397 D 0:48, p-value = 79.0%).
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