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Abstract

Strategies selected by combining multiple signals suffer severe overfitting
biases, because underlying signals are typically signed such that each predicts
positive in-sample returns. As a result, “highly significant” backtested

performance is easy to generate selecting stocks using combinations of randomly
generated signals, which by construction have no true power. This paper

analyzes t-statistic distributions for multi-signal strategies, both empirically
and theoretically, to determine appropriate critical values, which can be several

times standard levels. Overfitting bias also severely exacerbates the multiple
testing bias that arises when investigators consider more results than they

present. Combining the best k out of n candidate signals yields biases similar
to those obtained using the single best of nk candidate signals.
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1. Introduction

Multi-signal equity strategies, i.e., strategies that select or weight stocks on the

basis of composite measures that combines multiple signals, are common in the money

management industry. For example, the MSCI Quality Index, according to its fact

sheet, identifies “stocks with high quality scores based on three main fundamental

variables: high return on equity (ROE), stable year-over-year earnings growth, and

low financial leverage.” Popular “smart beta” products, such as Research Affiliates’

Fundamental Indices, also rely heavily on the methodology, weighting stocks on the

basis of multiple “fundamental” measures such as sales, cash flow, book value, and

dividends.

Increasingly, multi-signal strategies are attracting scholarly attention. Notable

examples of composite signals employed by academics for stock selection include

Piotroski’s (2000) F-score measure of financial strength, constructed from nine

market signals; the Gompers, Ishii, and Metrick’s (2003) Index, which combines 24

governance rules to proxy for shareholder rights; the Baker and Wurgler (2006) Index,

which combines six signals of investor sentiment; Asness, Frazzini, and Pedersen’s

(2013) quality score, which combines 21 stock level characteristics; and Stambaugh

and Yuan’s (2015) mispricing factors, which combine 11 anomaly signals.

Unfortunately, inferences drawn from tests of these sorts of strategies are

misleading, because the backtested performance of strategies selected on the basis of

multiple signals is biased, often severely. The bias results from overfitting. Underlying

signals are typically signed such that each predicts positive in-sample returns. That is,

an aspect of the data (in-sample performance of the individual signals) is used when

constructing the strategy, yielding a particular pernicious form of the data-snooping

biases discussed in Lo and MacKinlay (1990).

This overfitting bias is distinct from the selection bias (or multiple testing bias)

confronted by McLean and Pontiff (2016), Harvey, Liu, and Zhu (2016), and Baily
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and Lopez de Prado (2014). Selection bias results when the researcher employs the

best performing signal from among multiple candidates, and fails to account for doing

so. The overfitting bias considered here is strong even when there is no selection bias,

i.e., even when a researcher employs each and every signal considered.

While the overfitting and selection biases are distinct they do interact, with the

selection bias severely exacerbating the overfitting bias. In fact, the presence of the

two makes the bias exponentially worse. The bias resulting from combining the best

k signals from a set of n candidates is almost as bad as that from using the single

best signal out of nk candidates.

To demonstrate the severity of the overfitting bias I construct, using real stock

returns, empirical distributions of backtested t-statistics for multi-signal strategies,

selected on the basis of purely random signals. The sorting variables (i.e., the

random signals) have no real power, but strategies based on combinations of the

“signals” perform strongly. Essentially, diversifying across the recommendations of

stock pickers that performed well in the past yields even better past performance,

even when the recommendations just follow (or go against) the results of monkeys

throwing darts at the Wall Street Journal. This strong backtested performance in

no way suggests, of course, that these recommendations have any power predicting

returns going forward. For some of the constructions I consider strategies usually

backtest, in real data, with t-statistics in excess of five, and statistical significance at

the 5% level requires t-statistics in excess of seven, despite the fact that the variable

used to select stocks has no power predicting returns.

To develop intuition for the observed empirical results I derive theoretical

distributions for critical t-statistics, under the null that signals are uninformative

and strategy returns are normally distributed. These critical values, which have close

analytic approximations, are similar to those observed in the data. Analysis of these

results yields several additional intuitions. First, it suggests that the overfitting bias
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is severely exacerbated, at least when there is little selection bias, when more weight

is put on stronger signals. That is, when researchers allow themselves more flexibility

to overfit the data, in the form of freedom to weight different signals differently,

then backtested performance is significantly more biased. It also suggests that when

researchers constrain themselves to weight signals equally, then the optimal use of

the roughly half of the signals that backtest least strongly, at least for the purpose

of maximizing backtested t-statistics, is to simply ignore them. Finally, the model

implies the approximate power law for the interaction of the overfitting and selection

biases, that the bias that results from combining the best k out of n candidate signals

yields biases almost as large as those that result from selecting the single best of nk

candidate signals. This suggested theoretical relation also holds in the data.

Note that these results do not suggest that strategy performance cannot be

improved by combining multiple signals. The basic tenants of Markowitz’s (1952)

modern portfolio theory hold, and efficient combinations of high Sharpe ratio assets

have even higher Sharpe ratios. The results do strongly suggest, however, that the

marginal contribution of each individual signal should be evaluated individually. That

is, while one should combine multiple signals they believe in, one should not believe

in a combination of signals simply because they backtest well together.

2. Empirical results

This section considers the backtested performance of strategies selected by

combining random signals. It generates empirical distributions of backtested

t-statistics for a general class of multi-signal strategies, when signals are uninformative

about expected returns, by considering combinations of multiple random signals

millions of times. By construction, these signals have no real power, and cannot

predict performance out-of-sample.
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2.1. Strategy construction

2.1.1. Single signal strategies

Given a signal for stock selection, the associated strategy’s returns are constructed

by weighting the returns to individual stocks in proportion to the signal. That is, the

associated strategy’s returns are given by

r i D
PN

j D1 S i
j rj

PN
j D1 S i

j

; (1)

where the superscripts correspond to the signal, the subscripts to individual stocks,

and time has been suppressed for notational convenience.1

The strategy’s active return relative to the benchmark, average stock return

rbmk D 1
N

PN
j D1 rj is then

r i � rbmk D
PN

j D1 S i
j

�

rj � rbmk
�

PN
j D1 S i

j

D
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� �
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�
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j

(2)

D
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S i
j � S i

�

rj

PN
j D1 S i

j

;

where S i � 1
N

PN
j D1 S i

j denotes the average signal, and the second and third equalities

follow from the definitions of rbmk and S i , respectively. The performance of this active

return is the focus of this study.

1 For expositional simplicity I focus here on strategies constructed without regard for market
capitalizations (i.e., purely signal-weighted strategies). Appendix A.1 provides similar results
for strategies that weight individual stocks in proportion to both their signals and their market
capitalizations (i.e., signal- and capitalization-weighted strategies). The more general specification
considered there embeds many common construction schemes, including standard quantile sorts,
as well as the rank-weighting scheme employed by Frazzini and Pedersen (2014) to construct their
betting-against-beta (BAB) factor.
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Note that any results related to this active return apply equally to the performance

of long/short strategies, as the active return to the long-only strategy considered here

weights stocks in proportion to how far stocks’ signals are from the mean signal, and

is thus a long/short strategy constructed on the basis of the signal. In terms of the

returns to a long/short strategy based on the signal that invests one dollar on each

the long and short sides,

r i;L=S D
PN

j D1

�

S i
j � S i

�

rj

1
2

PN
j D1

ˇ

ˇ

ˇS i
j � S i

ˇ

ˇ

ˇ

; (3)

the active returns to the long-only strategy can be written as

r i � rbmk D

0

@

1
2

PN
j D1

ˇ

ˇ

ˇ
S i

j � S i
ˇ

ˇ

ˇ

PN
j D1 S i

j

1

A r i;L=S : (4)

A dollar in the long-only strategy is thus equal to a dollar in the benchmark strategy,

plus a tilt toward the one dollar long/one dollar short strategy. The size of this tilt,

i.e., the leverage on the dollar long/dollar short strategy, is essentially determined

by the signal-to-noise ratio of the stock selection signal. If the signal is normally

distributed, then the expected leverage multiplier is �S=�S=
p

2� � 0:4 �S=�S .

Because the average signal is diversified across the individual stocks’ signals, there is

little variation in the leverage multiplier, provided the population mean of the signal

is not too small.

2.1.2. Implementation

Given a signal, I construct signal-weighted strategy performance using stock return

data from CRSP, rebalancing annually at the beginning of each year, over the 20 year

sample spanning January 1995 through December 2014. The sample length, short for

academic studies but common in practitioner oriented studies, is largely irrelevant
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given the paper’s focus on t-statistics. It has the advantage of somewhat alleviating

the computational burden posed when simulating millions of strategies constructed

using the entire cross section.

Individual underlying signals are randomly generated, drawn independently for

each stock at the start of each year from a normal distribution with positive mean. A

strategy’s active return relative to the benchmark is thus a long/short strategy that

weights stocks relative to individual stocks’ z-scores for the signal, a construction that

is common in industry. Empirically the performance of a z-score weighted long/short

strategy is almost indistinguishable from the performance of a quantile sorted strategy

that buys and sells stocks in the top and bottom 35% of the signal distribution. For

example, the returns to value (or momentum) strategies constructed using z-score

weighting, a quantile sort, and the rank-weighting procedure of Frazzini and Pedersen

(2014), explain between 97.8 and 99.6% of the return variation of the others, and none

of the strategies yield abnormal returns relative to either of the others that exceed

six basis points per month (details provided in Appendix A.2).

2.1.3. Strategies based on multiple signals

Let S!!! D
Pn

iD1 ! iS i
j be a composite signal, constructed as any linear combination

of any n underlying signals. Then the returns to the strategy that weights stocks on

the basis of the composite signal is

r!!! D
PN

j D1

�
Pn

iD1 ! iS i
j

�

rj

PN
j D1

�
Pn

iD1 ! iS i
j

�

D
Pn

iD1 ! i
�

PN
j D1 S i

j rj

�

Pn
iD1 ! i

�

PN
j D1 S i

j

� (5)

D
N
X

iD1

wir i ;
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where wj � !j S j =
PN

iD1 ! iS i . That is, the returns to the strategy based on the

composite signal is just a weighted average of the returns to the strategies based on

the individual signals, where the weights are proportional to the individual signals’

cross-sectional averages and their weights in the composite signal.2 This establishes

an exact correspondence between the performance of integrated strategies (i.e., those

based on composite signals) and siloed strategies (i.e., those that allocate resources

across strategies based on single signals). This correspondence is easily observed in

practice. For example, over the July 1963 to December 2014 sample, the active returns

to a strategy based on a 50/50 mix of stocks’ z-scores for value and momentum is

completely indistinguishable from the active return to a 50/50 mix of the strategies

based on the individual z-scores.3

2.2. Best k-of-n strategy performance

What type of strategy arises naturally out of a typical research process? A

researcher may have a concept or model that suggests a certain sort of stocks will

have higher returns. She then investigates a set of possible empirical proxies that

she thinks might signal stocks that look good on this dimension, and chooses to

somehow combine the few that work the best. If an investigator considers n signals,

and combines the best k of these to select stocks, the result is a best k-of-n strategy.

When k D 1 this results in pure multiple testing, or selection, bias. This bias is

relatively well understood, and interesting here primarily as a point of comparison.

2 The weights on the single-signal strategy returns are approximately directly proportional to the
individual signals’ weights in the composite signal if the individual signals are identically distributed,
because with a large cross section each signal’s mean is close to its ex ante expected value, and thus
essentially equal across identically distributed signals.

3 Strategies here are restricted to stocks for which, at the time of portfolio formation, there are
current data for both value and momentum (positive book-to-market, and stock performance over
the first eleven months of the preceding year, respectively). To ensure that the strategies take only
long positions, which requires that the signal is non-negative, the stock selection is done using an
off-set standard score, S i

j � zi
j C 5, where zi

j is cross sectionally demeaned log book-to-market (i D
value) or log returns (i D momentum) for stock j , scaled by the cross sectional standard deviation
of the sorting variable.
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At the opposite extreme, when k D n the result is a pure overfitting bias. When

1 < k < n the result is a combination of sample selection and overfitting bias.

For strategies that combine multiple signals there is an additional issue, related

to how signals are combined. In particular, will the investigator constrain herself

to putting the same weight on each signal, or will she give herself the freedom to

employ different weights for each signal? I consider both cases here, proxying for the

latter by signal-weighting the signals, i.e., weighting each signal in proportion to the

in-sample performance of the active returns of the strategy based on it alone. These

correspond to the weights on the ex-post mean-variance portfolio of the individual

strategies’ active returns (i.e., the weights on the maximal information ratio portfolio),

assuming these active returns are uncorrelated and have identical volatilities.

2.2.1. Critical t-statistics for multi-signal strategies

Because of the selection and overfitting biases that result when researchers consider

more signals than they employ, and when they sign individual signals to generate

positive in-sample returns, the distribution of t-statistics for a multi-signal strategy

does not have a standard normal distribution. Critical values derived from that

distribution consequently cannot be used to draw inferences regarding significance of

performance for multi-signal strategies. Under the null that none of the signals have

power predicting returns, absolute t-statistics that exceed 1.96 should be observed

on only 5% of the strategies constructed from the underlying signal. There is no

reason to believe, however, that large t-statistics are equally unlikely on multi-signal

strategies. Figures 1 and 2 show the effects of these biases, in the special cases when

only one bias is present (k D 1 and k D n), and in the general case, respectively.

It does so by giving empirically observed critical 5% t-statistics derived from a large

number of best k-of-n strategies (100,000 for each fk; ng pair). These strategy returns

are calculated using real stock returns, employing randomly generated, uninformative
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Signal-weighted signals

Equal-weighted signals

Single best signal

Model 5% critical thresholds, special cases (k D n and k D 1)

Pure overfitting (k D n),
signal-weighted signals

Pure overfitting (k D n),
equal-weighted signals

Pure selection bias (k D 1)

Number of signals considered (n)

Fig. 1. Five percent critical t-statistics for the active return on best 1-of-n and best n-of-n

strategies. The bottom, dotted line shows 5% critical thresholds for the pure selection bias

case, when the investigator presents the strongest result from a set of n random strategies,

where n 2 f1; 2; :::; 10g. The middle, solid line and the top, dashed line, shows 5% critical

thresholds when there is pure overfitting bias. In these cases stocks are selected by combining

all n random signals, but the underlying signals are individually signed so that each predicts

positive in-sample active returns. In the top, dashed line signals are signal-weighted, while

in the middle, solid line signals are equal-weighted. Critical values come from generating

100,000 sets of n randomly generated signals. Returns are signal-weighted, with stocks held

in proportion to the signal used for strategy construction, and rebalanced annually at the

start of each year. Return data come from CRSP, and the sample covers January 1995

through December 2014.
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signals.

Figure 1 shows empirical 5% critical values for the best 1-of-n strategies, which

suffer from pure selection bias, and for best n-of-n strategies, which suffer from

pure overfitting bias. For the pure overfitting results, it shows both the case when

the composite signal is constructed by equal-weighting the individual signals and

when it is constructed by signal-weighting the individual signals. The figure shows

that overfitting by signal-weighting signals yields much higher critical values than

overfitting by equal-weighting signals. That is, the pure overfitting problem is more

acute when the investigator has more freedom to overweight good signals. But even

when an investigator constrains herself to weight signals equally, and employs every

signal she considers, the resulting overfitting bias is still significantly more acute than

the more familiar multiple testing bias.

Figure 2 shows empirical 5% critical values for more general best k-of-n strategies,

which suffer from both selection and overfitting biases. It shows these critical values

when the best one to ten signals are employed, for the cases when 10, 20, 40, or 100

signals are considered, both when signals are equal-weighted (solid lines) and when

signals are signal-weighted (dotted lines). The combined biases yield extreme critical

values. For the best 2-of-10 strategies the 5% critical t-statistic is almost three and

a half; for the best 3-of-20 strategies it exceeds four; for the best 4-of-40 strategies

it is five. The figure also shows a non-monotonicity in the critical value for the

equal-weighted signal case when n D 10, and a large divergence between the critical

values of the equal-weighted signal and signal-weighted signal strategies when most

the signals considered are employed. This occurs because in-sample performance

is impaired by putting significant weight on poor quality signals, an effect that is

considered in greater detail in the next section.

Appendix A.1 shows qualitatively similar results for strategies that weight stocks

by market capitalization as well as signal.
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Signal-weighted signals

Equal-weighted signals

Empirical 5% t-statistics, general cases (arbitrary k � n)

n D 100

n D 40

n D 20

n D 10

Number of signals employed (k)

Fig. 2. Five percent critical t-statistics for best k-of-n strategies. The figure shows 5%

critical thresholds for strategies selected using a signal constructed by combining the best
k D 1; 2; :::; 10 performing signals, when the investigator considered n 2 f10; 20; 40; 100g
candidate signals. Solid lines show the cases when the composite signal is constructed by
equal-weighting the k best performing candidate signals, and dotted lines the cases when

the composite signal is constructed by signal-weighting the signals. Critical values come
from generating 100,000 sets of n randomly generated signals. Returns are signal-weighted,
with stocks held in proportion to the signal used for strategy construction, and rebalanced

annually at the start of each year. Return data come from CRSP, and the sample covers
January 1995 through December 2014.

11



3. Theoretical results

To develop intuition for the results observed in the preceding section, I analyze

a simplified model of strategy performance, deriving distributions of backtest

t-statistics, and properties of these distributions, when stocks are selected on the

basis of multiple signals.

3.1. Model

Suppose there are n underlying signals used for stock selection, and that the

active returns to signal-weighted strategies are normally distributed, uncorrelated

across signals, and have the same volatilities (�). Under these assumptions, the

performance of strategies based on composite signals, formed as linear combinations

of the underlying signals, are relatively easy to analyze. First, the normality of returns

implies that standard results from modern portfolio theory hold. Second, weights on

individual stocks in a strategy are proportional to the signal used to select them, and

composite signals are linear combinations of the underlying signals. By the results

of section 2.1.3, therefore, a strategy selected on the basis of a composite signal is

identical to a portfolio of strategies based on the individual underlying signals, held

in proportion to the weights used to construct the composite signal. This allows us

to apply the standard results of modern portfolio theory.

Given n signals, the ex-post Sharpe ratio of the active returns to the strategy that

selects stocks based on a composite signal that puts weights !!! D .!1; !2; :::; !n/ on

the individual signals is, by the results of subsection 2.1.3, essentially the same as

that to the portfolio that puts weights !!! on strategies selected from the individual

signals,

SR!!! D !!! 0���e

p
!!!0†††!!!

; (6)
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where ���e is the vector of realized average active returns to strategies selected using

the n signals, and ††† D �2
I is the variance-covariance matrix for these active returns.

The sample t-statistic estimated on the combined strategy is thus

t!!! D !!! 0tttp
!!! 0!!!

; (7)

where ttt is the vector of t-statistics estimated on the individual strategies.

The back-tested performance of strategies formed on the basis of multiple signals

consequently depends on how the signals are used. The two most common choices,

equal-weighting the signals (!!! D 1= k1k1) and signal-weighting the signals (!!! D

ttt= ktttk1), here correspond to well understood strategies, the minimum variance and

ex-post mean-variance efficient portfolios, respectively.4

Without loss of generality, we may assume that the elements of ttt are arranged

in increasing order, and letting In;k be the orthogonal projection onto the lower k

dimensional sub-space (i.e., .In;k/ij D 1 if i D j > n � k, and zero otherwise), we

then have that the sample t-statistics for the minimum variance (i.e., equal-weighted)

and mean variance efficient (i.e., signal-weighted) strategies based on the best k-of-n

signals, denoted tMV
n;k

and tMVE
n;k

, respectively, are given by

tMV
n;k D 1

0
In;kttt

p

10In;k1
D kIn;ktttk1p

k
D

Pk
iD1 t.nC1�i/p

k
(8)

tMVE
n;k D ttt 0

In;kttt
p

ttt 0In;kttt
D kIn;ktttk2 D

v

u

u

t

k
X

iD1

t2
.nC1�i/

; (9)

where t.j / denotes the j th order statistic of ft1; t2; :::; tng. That is, the t-statistic for

the best k-of-n strategy that equal weights signals is the L1-norm of the vector of the

4The results presented here for the case when signals are equal-weighted hold more generally.
When there is heterogeneity in the volatilities of strategies based on the individual signals, it then
corresponding to the “risk-parity” strategy based on the multiple signals.
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largest k order statistics of ttt divided by
p

k. Equivalently, it is
p

k times the average

t-statistic of the strategies corresponding to the signals employed. For the strategy

that signal weights the signals, the t-statistic is the L2-norm of the largest k order

statistics. Strategy construction tells us that tMV
n;k

� tMVE
n;k

, and standard results for

Lp-norms imply that the bound is tight if and only if the k largest order statistics

are all equal.

When employing k signals from a set of n candidates, I will denote the critical

threshold for tMV
n;k

and tMVE
n;k

at a p-value of p by t�
n;k;p

and t��
n;k;p

, respectively.

3.2. Critical t-statistics for special cases

Before analyzing arbitrary t�
n;k;p

and t��
n;k;p

, it is again useful to develop intuition

by first considering the extreme cases. The first of these occurs when the investigator

considers several signals, but only reports results for the single best performing

strategy (k D 1), and again corresponds to pure selection bias. The properties of

the critical threshold in this case are well understood, but provide a useful point

of comparison. The second occurs when the investigator employs all the signals

considered (k D n), but signs each to predict positive in-sample returns, and again

corresponds to pure overfitting bias. It is free from sample-selection bias, but is biased

nevertheless because the joint signal is constructed using information regarding the

directionality with which each individual signal predicts in-sample returns.

3.2.1. Pure selection bias: Inference when a single signal is used

For the best 1-of-n strategies, note that the order statistics for standard uniform

random variables follow beta distributions, U.k/ � Beta.k; n C 1 � k/. So for the

maximal order statistic, P
�

U.n/ < x
�

D xn, or P
�

U.n/ > .1 � p/1=n
�

D p, implying a

critical t-statistic for rejection at the p level for the single best result from n random
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strategies of

t�
n;1;p D t��

n;1;p D N �1
�

�

1 � p

2

�1=n
�

; (10)

where N �1.�/ is the inverse of the cumulative normal distribution.

These critical values can be interpreted by recognizing that P
�

j�j > t�
n;1;p

�

D

2N
�

�t�
n;1;p

�

D 2
�

1 � .1 � p=2/1=n
�

� p=n. That is, to close approximation the

actual p-value is n times as large as the p-value commonly claimed for an observed

t-statistic. If one suspects that the observer considered 10 strategies, significance at

the 5% level requires that the results appear significant, using standard tests, at the

0.5% level. This is the standard Bonferroni correction for multiple comparison when

the hypothesis is that the expected returns to all n candidate strategies are zero.

3.2.2. Pure overfitting bias: Inference when all signals considered are used

When all the signals considered are used there is no selection bias, but overfitting

still occurs because the signals are typically signed so that they predict high

returns in-sample. In this case the distribution of the observed t-statistic for the

strategy based on the signal-weighted signal (i.e., the ex post MVE combination

of the n strategies) is trivial. All the signals are employed, and the t-statistics

on the excess returns to the strategies based on the underlying signals come from

independent standard normal draws. The t-statistic on the signal-weighted strategy

is consequently distributed as a chi-distribution with n degrees of freedom,

tMVE
n;n D ktttk

2
�

q

�2
n: (11)

The critical t-statistic for the strategy constructed using the signal-weighted

combination of n randomly selected signals comes from inverting the chi-squared
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distribution,

t��
n;n;p D

q

ˆ�1

�2
n

.1 � p/; (12)

where ˆX denotes the cumulative distribution function for the random variable X .

The critical values for the strategies based on the equally weighted signals are more

difficult, but have a simple asymptotic approximation. The mean and variance of the

absolute value of the standard normal variable are
p

2=� and 1 � 2=� , respectively,

so limn!1 ktttk
1

� N
�

n
p

2=�; n.1 � 2=�/
�

, and

tMV
n;n D

ktttk
1p

n
�

n!1

q

2n
�

C
�

q

1 � 2
�

�

�: (13)

This implies an asymptotic critical value of

t�
n;n;p �

�

q

2
�

�p
n C

�

q

1 � 2
�

�

N �1.1 � p/ : (14)

The true distribution of tMV
n;n is positively skewed and has excess kurtosis, especially

for small n, so the true probability that tMV
n;n exceeds this critical value exceeds p.

That is, the estimate is a lower bound on the true critical value. The performance of

this estimator is improved, especially for small n, by replacing p with np

nC1
,

t�
n;n;p �

�

q

2
�

�p
n C

�

q

1 � 2
�

�

N �1
�

1 � np
nC1

�

: (15)

Figure 3 shows 5% critical values for these special cases. The bottom, dotted line

shows t�
1;n;5%, the critical value for the best 1-of-n strategy, which suffers from pure

selection bias. The top, dashed line, and the solid, middle line, show t�
n;n;5% and t��

n;n;5%,

the critical values for the best n-of-n strategies when signals are signal-weighted and

equal-weighted, respectively, which suffer from pure overfitting bias. The dash-dotted
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Signal-weighted signals

Equal-weighted signals (exact)

Equal-weighted signals (approximation)

Single best signal

Model 5% critical thresholds, special cases (k D n and k D 1)

Pure overfitting (k D n),
signal-weighted signals

Pure overfitting (k D n),
equal-weighted signals

Pure selection bias (k D 1)

Number of signals considered (n)

Fig. 3. Model 5% critical t-statistics for best 1-of-n and best n-of-n strategies. The

bottom, dotted line shows 5% critical thresholds for the pure selection bias case, when

the investigator presents the strongest result from a set of n random strategies, where

n 2 f1; 2; :::; 10g. The middle, solid line and the top, dashed line, show 5% critical thresholds

when there is pure overfitting bias. In these cases stocks are selected by combining all n

random signals, but the underlying signals are signed so that they predict positive in-sample

returns. In the top, dashed line signals are signal-weighted, while in the middle, solid line

signals are equal-weighted. The dot-dashed line shows the analytic approximation for the

equal-weighted best n-of-n case.
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line shows the analytic approximation for t�
n;n;5%, provided in equation (15), which

closely matches the exact value. The figure shows a remarkable resemblance to

the empirical distributions bootstrapped from real stock market data using random

signals, provided in Figure 1. A direct comparison is provided in the next subsection.

3.3. General case: best kkk-of-nnn strategies

To calculate the critical t-statistic more generally, when the selection and

overfitting biases interact, note that equations (8) and (9) can be rewritten, using

the fact that the top k order statistics of the uniform distribution are uniformly

distributed on the interval between the next largest order statistic and one, as

p
ktMV

n;k D
k
X

iD1

t.nC1�i/ D
k
X

iD1

�

ti
ˇ

ˇti > t.n�k/

�

(16)

�

tMVE
n;k

�2 D
k
X

iD1

t2
.nC1�i/ D

k
X

iD1

�

t2
i

ˇ

ˇti > t.n�k/

�

: (17)

The right hand sides of the previous two equations are conditional sums of

independent random variables, and have distributions that can be calculated as k-fold

convolutions,

�p
ktMV

n;k
.x/ D

Z 1

yD0

�t.n�k/
.y/��k

�j�>y.x/dy (18)

�
.tMVE

n;k /
2.x/ D

Z 1

yD0

�t.n�k/
.y/��k

�2j�>y
.x/dy; (19)
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where ��k
X is the k-fold convolution of the probability density function for X , and

��j�>y.x/ D n.x/1x�y

1 � N.y/
(20)

��2j�>y.x/ D ��2.x/1x�y

1 � ˆ�2.y/
(21)

�t.n�k/
.y/ D 2n.y/�Beta.n�k;kC1/

�

2N.y/ � 1
�

; (22)

with the last of these following from the fact that the underlying signed t-statistics

have absolute standard normal distributions, ti � N �1
�

1CU
2

�

where U is a standard

uniform random variable, and U.k/ � Beta.k; n C 1 � k/.

The distributions of the t-statistics of interest can then be recovered using

�tMV

n;k
.x/ D

p
k�p

k�MV

n;k

�p
kx
�

(23)

�tMVE

n;k
.x/ D 2x�

.tMVE

n;k /
2

�

x2
�

: (24)

While these distribution cannot be expressed as closed-form analytic functions,

they are easy to calculate numerically.5 Figure 4 shows 5% critical values as a

function of the number of signals employed (k 2 f1; 2; :::10g), for cases in which

the investigator considers ten, 20, 40, or 100 signals (n 2 f10; 20; 40; 100g). The

figure again shows a strong resemblance to the corresponding empirical critical values

provided in Figure 2. It also shows the same non-monotonicity in the critical value

for the equal-weighted signal case when n D 10, and a large divergence between the

5 The required convolutions are quickly calculated using fast Fourier transforms. The fact that
��2.x/ is unbounded as x approaches zero introduces computational complications, especially when
k D n � 1 and there is a significant probability that some of the underlying strategies exhibit
marginal in-sample performance. These complications can be avoided using the fact that the two-fold
convolution of the conditional chi-squared distribution has a (bounded) analytic characterization,

��2
�2j�>y

.x/ D
e�x=2 sin�1

�

1 � 2y
x

�

1x�2y

�
�

1 � ˆ�2.y/
�2

: (25)
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Signal-weighted signals

Equal-weighted signals

Model 5% critical values, general cases (arbitrary k � n)

n D 100

n D 40

n D 20

n D 10

Number of signals employed (k)

Fig. 4. Model 5% critical t-statistics for best k-of-n strategies. The figure shows 5%

critical thresholds for strategies selected using a signal constructed by combining the best

k D 1; 2; :::; 10 performing signals, when the investigator considered n 2 f10; 20; 40; 100g
candidate signals. Solid lines show the cases when the composite signal is constructed by

equal-weighting the k best performing candidate signals, and dotted lines the cases when

the composite signal is constructed by signal-weighting the signals.
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Critical t-statistics, general case (signal-weighted signals)
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Fig. 5. Comparison of empirical and theoretic 5% critical t-statistics. Panel A shows the 5% critical
t-statistics observed in the data, and those that come out of the model, in the special cases when
there is pure selection bias (k D 1) and pure overfitting bias (k D n) for both signal-weighed (MVE)
and equal-weighted (MV) signals. Panel B shows these critical values in the general best k-of-n case,
when from one to ten signals are selected from a set of 10, 20, 40, or 100 candidate signals, and
signals are combined by equal-weighting. Panel C shows the same when signals are signal-weighted.
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critical values for strategies that equal- and signal-weight signals when k � n. These

effects are considered in greater detail in the next subsection.

Figure 5 provides a direct comparison of the empirical critical 5% t-statistics shown

in Figures 1 and 2, and the theoretic distributions derived for the model shown in

Figures 3 and 4. The top panel shows the special cases, for k D 1, and for k D n

both when signals are signal-weighted (MVE) and when signals are equal-weighted

(MV). The middle panel shows the cases for k 2 f1; 2; :::; 10g and n 2 f10; 20; 40; 100g

when signals are equal-weighted. The bottom panel shows the same, when signals

are signal-weighted. In all cases the empirical and model results closely agree, with

empirical critical values slightly exceeding those derived from theory, reflecting the

excess kurtosis and heteroskedasticity of real world returns that is absent from the

model.

4. Critical value approximation

The previous sections have focused on critical t-statistics. This has simplified the

analysis, but has largely obscured an important fact: the distribution of best k-of-n

t-statistics observed in the data and derived in the model are approximately normal.

This approximation is close if n is not too close to one. Figure 6 illustrates this

fact, showing the distributions of t-statistics for best 3-of-20 strategies, both from the

model and as observed in the data, along with a normal distribution with a mean

of 3.15 and standard deviation of 0.56. The empirical density is calculated from the

slope of the empirical cumulative distribution function, estimated at each point from

the best fit cubic polynomial using all the t-statistics observed within one half of the

point of estimation.

The near normality observed in Figure 6, as well as the success of the normal

approximation for the critical t-statistic for the special case when k D n and
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Best 3-of-20 t-statistic density, equal-weighted signals

Fig. 6. Densities for best 3-of-20 strategy t-statistics, equal-weighted signals. The figure
shows the distributions of t-statistics, both from the model (dashed line) and as observed in
the data (solid line), together with a normal distribution with a mean of 3.15 and standard
deviation of 0.56 (dotted line). The empirical density is calculated from the slope of the
empirical cumulative distribution function (CDF), estimated at each point from the best fit
cubic polynomial using all the t-statistics observed within one half of the point of estimation.
The empirical CDF comes from the active returns to 100,000 best 3-of-20 strategies, selected
on the bases of signals randomly generated at the start of each year, over the sample period
January 1995 through December 2014. Stock return data come from CRSP.

signals are equal-weighted, derived in subsection 3.2, suggests a similar critical value

approximation for the general cases. Appendix A.4 derives relatively simple analytic

approximations, for general best k-of-n strategy critical t-statistics for any p-value,

both when signals are equal-weighted and signal-weighted. These are given by

t�
n;k;p � �

tMV

n;k

C �
tMV

n;k

N �1
�

1 � kp

kC1

�

(26)

t��
n;k;p �

r

�
.tMVE

n;k /
2 C �

.tMVE

n;k /
2N �1

�

1 � kp

kC1

�

; (27)
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where

�
tMV

n;k

D
p

k �n;k (28)

�2
tMV

n;k

D †n;k � �2
n;k C k.n�k/.�n;k ��n;k/

2

.kC1/.nC2/
(29)

�
.tMVE

n;k /
2 D k†n;k (30)

�2

.tMVE

n;k /
2 D k

�

�3
n;k�n;k C 3†n;k � †2

n;k

�

C k2.n�k/.†n;k ��2
n;k/

2

.kC1/.nC2/
; (31)

and

�n;k � N �1
�

E
�

1
2

�

1 C U.n�k/

���

D N �1
�

1 � kC1
2.nC1/

�

(32)

�n;k � E Œ�j� > �n;k� D n.�n;k/

1 � N.�n;k/
D 2

�

nC1
kC1

�

n.�n;k/ (33)

†n;k � E
�

�2j� > �n;k

�

D 1 C �n;k�n;k: (34)

The variances terms in equations (26) and (27) are relatively insensitive to n and k,

while the means are strongly increasing in both indices, at least for small k.

Figure 7 compares these analytic approximations to the exact critical values,

calculated from equations (18) and (19) using numeric integration. Panel A shows

the case when the investigator considers 100 candidate signals (n D 100), for the full

range of the possible number of signals employed (k D 1; 2; :::; 100). The top, light

solid line shows the exact critical values for the cases when signals are signal-weighted,

while the closely tracking dotted line shows the corresponding approximation. The

lower, dark lines show the same for the cases when signals are equal-weighted. Panels

B and C depict similar results, when the investigator considers only 40 or 20 candidate

signals.

An obvious feature of Figure 7 is the peak in t�
n;k;p

near the middle, where

k � n=2. The performance of the ex-post mean variance efficient strategy is
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Fig. 7. Comparison of exact and approximate 5% critical t-statistics for best k-of-n

strategies. The figure shows 5% critical thresholds for best k-of-n strategies. Solid lines

are exact values, while dotted lines are analytic approximations. The top, lighter lines

show critical values for strategies that signal-weight signals, while the lower, darker lines

correspond to strategies that equal-weight signals.
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always weakly improved by adding strategies to the investment opportunity set, so

the critical t-statistic threshold for the signal-weighted combination of strategies,

t��
n;k;p

, is increasing in k � n for all n and p. The same is not true for the

critical t-statistic threshold for the equal-weighted combination of strategies, t�
n;k;p

.

With these strategies there is a tension. Increasing the number of signals used

decreases strategy volatility, which tends to improve performance. At the same time,

using more signals reduces average returns, as the average quality of the signals for

predicting in-sample performance falls, which tends to hurt performance. Initially the

first effect dominates, and performance improves with more signals, but eventually

the signal quality deteriorates sufficiently that the gains from additional strategy

diversification are more than offset by the loss in average returns. At that point

employing additional signals is detrimental to performance. The point at which overall

performance starts to deteriorate, i.e., the optimal number of signals to use to predict

in-sample performance, can be approximated by noting that this occurs (abusing the

infinitesimal notation) when d
dk

E
h

tMV
n;k

i

D 0. Differentiating the expected t-statistic

using the right hand side of equation (8), this implies

E
�

t.n�k/

�

E
h

Pk
iD1 t.nC1�i/

i D 1

2k
; (35)

or, after rearranging and using iterated expectations, that

E
�

t.n�k/

�

D E

2

4

E
h

Pk
iD1 t.nC1�i/

ˇ

ˇt.n�k/

i

2k

3

5 D
E
�

�
�

t.n�k/

��

2
: (36)

That is, there is no longer a benefit to using additional signals when the next signal

is only half as good as the average of all the better signals already employed.

Finally, using E
�

�
�

t.n�k/

��

� �
�

E
�

t.n�k/

��

and E
�

t.n�k/

�

� �n;k, the previous

equation implies that �n;k D �.�n;k/ =2; or using �n;k D N �1
�

1 � kC1
2.nC1/

�

and
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letting x� D 0:612 be the solution to 2x D n.x/=N.�x/, that kC1
nC1

� 2N.�x�/ D

0:541, or simply k � n=2. Consistent with Figure 7, given n candidate signals

the maximal Sharpe ratio strategy that equal-weights signals employs roughly half

the signals. That is, when forming equal-weighted strategies, the optimal “use”

of the worst performing half of the typical set of candidate signals is to simply

ignore them. Observing that a multi-signal strategy fails to employ any poor

quality signals consequently raises concerns that the investigator threw out poor

performing candidates, suggesting selection bias (i.e., n > k) as well as overfitting

bias (i.e., signing each signal so that it performs well in sample). In this case

the expected t-statistic is EŒtMV
2k;k

� � 4n
�

N �1.3=4/
�
p

k D 1:27
p

k, almost 60%

higher that the t-statistic that would have been expected absent the selection bias,

EŒtMV
k;k

� �
p

2k=� D 0:8
p

k.

5. Pure selection bias equivalence

Another way to quantify the impact of the combined sample selection and

overfitting biases, and how they interact, is to calculate the number of candidate

signals an investigator would need to consider, when selecting stocks using a single

signal, to get the same bias expected from a best k-of-n strategy. That is, to

calculate the size of the candidate signals set n�
n;k;p

(or n��
n;k;p

) implicitly defined

by t�
n�

n;k;p
;1;p

D t�
n;k;p

(or t��
n��

n;k;p
;1;p

D t��
n;k;p

). Using t�
n;1;p D t��

n;1;p D N �1
�

�

1 � p

2

�1=n
�

,

these imply

n�
n;k;p D

ln
�

1 � p

2

�

ln
�

N
�

t�
n;k;p

�� : (37)

n��
n;k;p D

ln
�

1 � p

2

�

ln
�

N
�

t��
n;k;p

�� : (38)
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Table 1. Single-signal candidates for best k-of-n 5% critical threshold

The table reports the number of candidates a researcher would need to consider, when selecting

the single strongest signal, to get the same 5% critical t-statistic for a best k-of-n strategy. Panel

A reports the cases when the signals are equal-weighted (n�
n;k;p

), and Panel B the cases when the

signals are signal-weighted (n�
n;k;p

).

Signals Signals used (k)

considered (n) 2 3 4 5 10

Panel A: Equal-weighted signals (minimum variance strategies)

10 73 211 386 522 170
20 327 1,780 6,240 16,500 144,000
40 1,460 15,100 98,500 483,000 8.15�107

100 10,300 268,000 4.03�106 4.32�107 3.32�1011

Panel B: Signal-weighted signals (mean-variance efficient strategies)

10 97 357 816 1,450 3,550
20 423 2,770 11,500 34,900 884,000
40 1,790 21,700 167,000 919,000 3.17�108

100 11,800 352,000 5.98�106 7.09�107 9.16�1011

Table 1 shows single-signal equivalent sample sizes, for actual sample size from

ten to 100 (rows), when employing two to ten signals (columns). The table shows the

pernicious interaction between the sample selection and overfitting biases. Panel A,

which shows the case when multiple signals are equal-weighted, shows that using just

the best three signals from 20 candidates yields a bias as bad as if the investigator

had used the single best performing signal from 1,780 candidates. With five signals

selected from 40 candidates, the bias is almost as bad as if the investigator had used

the single best performing signal from half a million candidates. Panel B shows even

stronger results when the researcher has the freedom to overweight more strongly

performing signals.

A key feature of Table 1 is that the equivalent number of single signals considered

(n�
n;k;p

and n��
n;k;p

) grows quickly with the number of true candidate signals (n),

and this growth rate is strongly increasing in the number of signals employed (k).

To help understand this, consider the following. For each j 2 f1; 2; :::; n�g, let
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X
j
1 ; X

j
2 ; :::; X

j
2n be a sequence of independent standard normal random draws, and

S
j

k
D
�

Pk
iD1 X

j
i

�

=
p

k denote the scaled kth partial sum of the j th sequence. Note

that S
j

k
has a standard normal distribution for any j and k (independent across

sequences), so is distributed like the performance of a strategy formed on a single

uninformative random signal. It also corresponds, by construction, to the expected

t-statistic on a strategy selected on the basis of an equal-weighted combination of the

first k of 2n uninformative signals (the X
j
i ), where the composite signal is constructed

without signing the individual underlying signal to predict positive in-sample returns.

Now how many scaled kth partial sums do you expect to have to look at before

observing signed performance (jS j

k
j) as good as you expect from a best k-of-n strategy

(tMV
n;k

)?

For any given sequence, the probability that the kth partial sum is

equal to the sum of the sequence’s k largest (or smallest) order statistics is

P
�p

kS
j

k
D
Pk

iD1 X
j

.2nC1�i/

�

D
�

2n

k

��1
. On average an investigator consequently

has to observe 1
2

�

2n

k

�

sequences before seeing one for which the kth partial

sum is comprised of k extreme order statistics. Letting X.kIn/ denote the

kth order statistic of n independent draws of X , and using the fact that

j�j.n�iC1In/ �
�

�.n�iC1I2n/

ˇ

ˇ�.nI2n/ D 0
� approx.� �.n�iC1I2n/ for large n, because both

the mean and variance of �.nI2n/ are close to zero, we have that tMV
n;k

approx.�
�

S
j

k

ˇ

ˇ

p
kS

j

k
D
Pk

iD1 X
j

.2nC1�i/

�

. That is, in one out of every 1
2

�

2n

k

�

individual signals

an investigator comes across one that looks like the scaled sum of k extreme order

statistics from 2n standard normal draws, and this object has approximately the same

distribution as the performance of a best k-of-n strategy selected using uninformative

signals.

In practice this overstates the number of single-signal strategies an investigator

would have to observe before seeing performance as strong as expected from a typical

best k-of-n strategy. On the way to seeing a sequence for which the kth partial sum
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is comprised of its top k order statistics, one expects to see k other sequences with

kth partial sums that include k of the sequence’s top k C 1 order statistics, and some

of these scaled partial sums may be even larger. It does, however, suggest that the

number of single signals an investigator can expect to observe before seeing best k-of-n

performance is of order
�

n

k

�

. Using the fact that .n=k/k <
�

n

k

�

< nk, this implies an

approximately affine relation between ln n�
n;k;p

and ln n, with a slope proportional to

k, the number of signals employed.

This approximate log-linear relation is immediately apparent in Figure 8, which

plots, on a log-log scale, the number of single-signal candidates required to generate

the best k-of-n 5% critical values, (n�
n;k;5%, solid lines, and n��

n;k;5%, dotted lines), as

a function of the number of candidate strategies actually considered (n, from ten

to 100). These are plotted for strategies constructed using the best two, three, and

five signals. The figure clearly shows the approximately log-linear relation between

the number of single signals required to generate the bias inherent in the best k-of-n

strategy (n�
n;k;5%, n��

n;k;5%) and the actual number of candidate signals considered (n),

with slopes roughly proportional to the number of signals employed (k).6 That is,

n�
n;k;p

� o
�

nk
�

.

6 The approximately log-linear relation can be characterized using standard results for binomial
coefficients, logn�

n;k;p
D o

�

log
�

n
k

��

and log
�

n
k

�

� k log .n=k � 1=2/ C k � log
p

2�k. Alternatively,
it can be derived using the critical value approximation considered in Section 4. For p of interest

(i.e., small p), n�
n;k;p

� p=2

N.�t�

n;k;p
/
. Using the approximation that N.��/ � n.�/=� for large � and

taking logs gives that ln n�
n;k;p

is of order
�

t�
n;k;p

�2
. Using the approximation for t�

n;k;p
provided in

equation (26), this implies that lnn�
n;k;p

is of order k�2
n;k

. Finally, using �n;k � �n;k for k � n and

�n;k D N �1
�

1 � kC1
2.nC1/

�

, together with the inverse normal approximation N �1.x/ �
q

� ln .4x.1�x//p
�=8

,

this implies that lnn�
n;k;p

is approximately affine in lnn, with a slope roughly proportional to k.
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Fig. 8. Number of single candidate strategies to generate the five percent critical thresholds

for best k-of-n strategies. The figure plots, using a log-log scale, the number of single signals

required to generate the best k-of-n critical values at the 5% level, t�
n;k;5%

(equal-weighted

signals, solid lines) and t��
n;k;5%

(signal-weighted signals, dotted lines), as a function of the

number of candidate strategies actually considered (n, from ten to 100). Strategies are

constructed using the best two, three, and five signals (k). The figure shows the expected

approximately linear log-log relation, with slopes proportional to the number of signals

employed.
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6. Conclusion

Multi-signal strategies cannot be evaluated using conventional tests. It is easy,

combining spurious, marginal signals, to generate backtested performance that looks

impressive, at least when evaluated using the wrong statistics. One solution is

to evaluate multi-signal strategies using different statistics, derived in this paper.

Another easier potential solution is to evaluate the marginal power of each signal

individually, accounting, at a minimum, for the multiple testing bias presented by

the number of signals used. That is, to evaluate the alphas of strategies based

on each individual signal underlying any multi-signal strategy relative to all of the

others, using the Bonferroni correction to account for the fact that the investigator has

considered at least as many signals as she actually employs, and may have considered

many more.

This is certainly not meant to suggest that an investor should not employ multiple

signals, provided that they believe in each signal individually. Signals that work well

individually will work even better together. One should not, however, believe in

multiple signals because they backtest well together. High back-tested multi-signal

Sharpe ratios do not imply that any individual signal has any power predicting

returns, or that the multi-signal strategy is likely to perform well going forward.

Finally, these results have implications when evaluating competing asset pricing

models. Barillas and Shanken (2015) show that model comparison only requires

examining the extent to which each model prices the others’ factors. This is a results

about in-sample performance evaluation, however, where observed model success

simply reflects ex-post mean-variance efficiency of some combination of the model’s

factors. The results presented here consequently suggests that a model employing

factors based on multiple signals, even if perform strongly under the criteria of Barillas

and Shanken, may have little expected out of sample power pricing the cross section.
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A. Appendix

A.1. Capitalization-weighted strategies

The strategy return is the signal- and capitalization-weighted average stock return

(suppressing the time index),

r i D
PN

j D1 S i
j mj rj

PN
j D1 S i

j mj

: (39)

Define the benchmark return and average signal as the capitalization-weighted average

stock return and signal, respectively,

rbmk �
N
X

j D1

�mj

M

�

rj (40)

S i �
N
X

j D1

�mj

M

�

S i
j ; (41)

where M �
PN

j D1 mj is the aggregate market capitalization multiplier for the

universe the strategy trades in. Note that the variance in the average signal is much

smaller than the variance in the signal for any individual stock, because it is diversified

across all the stocks in the strategy’s opportunity set. Using these definitions, we can

write the strategy’s active return relative to the benchmark as

r i � rbmk D
PN

j D1 S i
j mj

�

rj � rbmk
�

PN
j D1 S i

j mj

D
PN

j D1

�

S i
j � S i

�

mj

�

rj � rbmk
�

PN
j D1 S i

j mj

(42)

D
PN

j D1

�

S i
j � S i

�

mj rj

PN
j D1 S i

j mj

;
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where the second and third equalities follow from the definitions of rbmk and S i ,

respectively.

This active return may be viewed as a long/short strategy that takes positions in

stocks in proportion to how far the signal is from the capitalization weighted mean.

In particular, noting that the returns to a long/short strategy based on the signal

that invests one dollar on each the long and short sides is

r i;L=S D
PN

j D1

�

S i
j � S i

�

mj rj

1
2

PN
j D1

ˇ

ˇ

ˇS i
j � S i

ˇ

ˇ

ˇmj

; (43)

the active returns to the long-only strategy can be written as

r i � rbmk D

0

@

1
2

PN
j D1

ˇ

ˇ

ˇ
S i

j � S i
ˇ

ˇ

ˇ
mj

PN
j D1 S i

j mj

1

A r i;L=S : (44)

That is, one dollar in the long-only strategy can be thought of as one dollar

in the benchmark strategy, plus a tilt toward the one dollar long/one dollar

short strategy based on the signal. The size of this tilt, i.e., the leverage on

the dollar long/dollar short strategy, is determined by the signal-to-noise ratio of

the stock selection signal. If the signal is normally distributed and uncorrelated

with the capitalization multiplier, then the expected leverage multiplier is again

.2�/�1=2 �S=�S � 0:4 �S=�S . Provided there are a large number of stocks in the

investment opportunity set, there is very little variation in realized values around

this expectation.
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A.1.1. Siloed vs. integrated strategies: a false dichotomy

Given any n, signals let S!!! D
Pn

iD1 ! iS i
j be a composite signal constructed as

any linear combination of the n fundamental signals. Then

rc D
PN

j D1

�
Pn

iD1 ! iS i
j

�

mj rj

PN
j D1

�
Pn

iD1 ! iS i
j

�

mj

D
Pn

iD1 ! i
�

PN
j D1 S i

j mj rj

�

Pn
iD1 ! i

�

PN
j D1 S i

j mj

� (45)

D
n
X

iD1

wir i

where wi � ! iS i=
Pn

j D1 !j S j . That is, the returns to the strategy based on the

composite signal is just a weighted average of the returns to the strategies based on the

individual signals, where the weights are proportional to both an individual signal’s

capitalization-weighted average value and its weight in the composite signal. This

establishes an exact correspondence between the performance of integrated strategies

(i.e., those based on composite signals) and siloed strategies (i.e., those that allocate

resources across single signal strategies).

A.2. Comparison of z-score weighing and quantile sorting

The long and short sides of the z-score weighted and tertile sorted strategies have

77% of their positions in common, a fact which is clearly evident in Figure A.1,

which shows the relative portfolio weights on the long sides of long/short strategies

based on quantile sorting, z-score weighting, and rank weighting. The non-overlapping

positions of the z-score weighted and tertile sorted strategies do not significantly differ

in their exposure to the underlying sorting variable. For example, a dollar in the long

side of a z-score weighted value strategy is equivalent to a dollar in the equal-weighted
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portfolio that holds the top 35% of stocks by book-to-market, plus a 23 cent long/short

position that buys both extreme and marginal value stocks (those in the top 13% of

the book-to-market distribution and those in the 50-65% range, respectively) while

shorting moderate value stocks (those in the 65-87% range of the book-to-market

distribution). The rank-weighting scheme employed by Frazzini and Pedersen (2014)

is even more similar, sharing 92% and 83% of its holding in common with the z-score

weighted strategy and the tertile sorted strategy, respectively. Because the stock

holdings of the three different constructions are so similar, the performance of the

three strategies is almost indistinguishable, with any one of the three strategies returns

explaining 98% of the return variation in any of the others.

The close correspondence between the three strategies is also reflected in Figure

A.2 and Table A.1, which compare the performance of value and momentum strategies

constructed using the three different weighting schemes. For each stock selection

signal (book-to-market, constructed using Compustat data, or stock performance

over the first eleven months of the preceding year), strategies are constructed using a

standard quantile sort (rtertile), or as the active returns to signal-weighted strategies,

where the signals employed are the z-score (rz-score) or percentile ranking (rrank) of the

sorting variable.7 Active returns are measured relative to the equal-weighted average

of the applicable universe (i.e., all stocks with book-to-market or past performance

data, respectively), and levered to run at the average in-sample volatility observed on

the tertile sorted strategy (9.5% for value and 14.7% for then momentum strategies,

respectively).

Figure A.2 shows the growth of a dollar invested in each of the three value

strategies (top panel), and in each of the three momentum strategies (bottom panel),

in the middle of 1963. In both cases the figure shows extremely similar performance.

7 For the z-scores I use an inverse normal transformation, which ensures signal normality and does
not necessitate dropping negative book-to-market firms. Using standard scores (i.e., cross-sectionally
demeaning and scaling by the cross-sectional standard deviation) for log book-to-market and past
log returns yields similar results.
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Fig. A.1. Relative portfolio weights, long sides of long/short strategies based on quantile

sorting, z-score weighting, and rank weighting. The figure plots, as a function of a stock’s

position in the cross sectional ranking of the sorting variable, the weight on stocks in the

long side of long/short strategies formed on the basis of the sorting variable. Weights are

shown relative to the weight on individual stocks held in the equal-weighted quantile sorted

strategy, which holds (shorts) the top (bottom) 35% of the distribution. Weights are shown

for three sorting methodologies, the z-score weighted construction (dark blue solid line), the

quantile sorted strategy (red dashed line), and the rank weighted construction (light yellow

dotted line). Short sidde weights (not shown) are symmetric around the median (50% level)

of the sorting variable distribution.
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Fig. A.2. Growth of a dollar, differently constructed value and momentum strategies. The figure

shows the performance of long/short strategies selected on the basis of book-to-market (top panel,

rebalanced annually at the end of June) and performance over the first eleven months of the preceding

month (bottom panel, rebalanced monthly). Strategies are tercile sorted (top and bottom 35%, equal

weighted), or weighted in proportion to the percentile rank or z-score of the stock selection variable.

Signal-weighted strategies are levered to run at the average in-sample volatility observed on the

tertile sorted strategy (9.5% for value and 14.7% for then momentum strategies, respectively). Data

come from CRSP and Compustat. The sample covers July 1963 through December 2014.
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Table A.1. Empirical comparison of different stock-weighting schemes

The table reports results from time-series regressions of the return of value or momentum
strategies (panels A and B, respectively) onto other strategies constructed using the same
sorting variable but different weighting scheme. Strategies are long/short. The weighting
schemes include a standard quantile sort (rtertile, using top and bottom 35%), and strategies
that weight stocks on the basis of how far an individual stock’s signal rank or signal z-score
is from the cross-sectional average (rrank and rz-score, respectively). Data come from CRSP
and Compustat, and the sample runs from July 1963 through December 2014).

Dependent variable
Independent
variable rz-score rtertile rrank

Panel A: Value strategies

˛ 0.06 0.03 -0.05 -0.03 0.03 -0.03
[3.84] [3.34] [-2.84] [-2.78] [3.30] [-2.78]

rz-score 0.99 1.00
[166.6] [308.9]

rtertile 0.99 1.00
[166.6] [302.2]

rrank 1.00 1.00
[302.2] [308.9]

OR2 (%) 97.8 99.3 97.8 99.4 99.4 99.3

Panel B: Momentum strategies

˛ -0.03 -0.02 0.05 0.02 -0.02 0.02
[-1.65] [-1.86] [2.20] [1.77] [-1.48] [2.16]

rz-score 0.99 1.00
[201.7] [389.0]

rtertile 0.99 1.00
[201.7] [377.1]

rrank 1.00 1.00
[377.1] [389.0]

OR2 (%) 98.5 99.6 98.5 99.6 99.6 99.6
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The z-score weighted strategy slightly out performs the standard quantile sorted

strategy for value, but slightly underperforms for momentum. In both cases the

performance of the rank-weighted strategies lies in between.

Table A.1 quantifies these results. It shows results of time-series regressions of the

returns to each of the strategies onto those of each of the other strategies constructed

using the same sorting variable. Between 97.8 and 99.6% of the return variation of

each strategy is explained by any of the others, and no strategy has abnormal returns

relative to any of the others that exceed six basis points per month.

Appendix B show a similar correspondence between value weighted quantile sorted

strategies, common in the academic literature, and the active returns to signal and

capitalization weighted strategies, which weight individual stocks in proportion to

both to their market capitalizations and to the z-score or rank of the sorting variable

used in strategy construction.

A.3. Empirical 5% critical values, cap weighted strategies

Figures A.3 and A.4 provide results (strategy performance and best k-of-n strategy

empirical 5% critical t-statistics), similar to those provided in Figure A.2 to 2 and

Table A.1, for strategies that are capitalization weighted as well as signal-weighted.
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Fig. A.3. Five percent critical t-statistics for the active return on best 1-of-n and best

n-of-n strategies, cap-weighted strategies. The bottom, dotted line shows 5% critical
thresholds for the pure selection bias case, when the investigator presents the strongest

result from a set of n random strategies, where n 2 f1; 2; :::; 10g. The middle, solid line and
the top, dashed line, show 5% critical thresholds when there is pure overfitting bias. In these
cases stocks are selected by combining all n random signals, but the underlying signals are

signed so that they predict positive in-sample active returns. In the top, dashed line signals
are signal-weighted, while in the middle, solid line signals are equal-weighted. Critical values

come from generating 100,000 sets of n randomly generated signals. In each strategy stocks’
returns are signal- and capitalization-weighted, with stocks held in proportion to both

the signal used for strategy construction and firms’ market capitalizations, and rebalanced
annually at the start of each year. Return data come from CRSP, and the sample covers

January 1995 through December 2014.
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Fig. A.4. Five percent critical t-statistics for best k-of-n strategies, cap-weighted. The

figure shows 5% critical thresholds for strategies selected using a signal constructed by
combining the best k D 1; 2; :::; 10 performing signals, when the investigator considered

n 2 f10; 20; 40; 100g candidate signals. Solid lines show the cases when the composite signal
is constructed by equal-weighting the k best performing candidate signals, and dotted lines

the cases when the composite signal is constructed by signal-weighting the signals. Critical
values come from generating 100,000 sets of n randomly generated signals. In each strategy
stocks’ returns are signal- and capitalization-weighted, with stocks held in proportion

to both the signal used for strategy construction and firms’ market capitalizations, and
rebalanced annually at the start of each year. Return data come from CRSP, and the

sample covers January 1995 through December 2014.
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A.4. Critical value approximation

Recall, from equations (8) and (9), that

tMV
n;k D
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iD1 t.nC1�i/p

k
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Then the top k order statistics of the standard uniform random variable,
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where �.x/ � EŒ�j� > x� D n.x/=N.�x/ denotes the inverse Mill’s ratio. The

first term on the right hand side of the previous equation inherits the approximate

normality of U.n�k/, with mean and variance, using t.n�k/ � N �1
�
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where the last equality follows from �0.x/ D �.x/2 � x�.x/ and
�
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�0
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and because the order statistics of the standard uniform random variable have beta

distributions, U.n�k/ � Beta.n � k; k C 1/, so E
�

1
2

�

1 C U.n�k/

��

D 1 � kC1
2.nC1/

and

Var
�

U.n�k/

�

D .n�k/.kC1/

.nC1/2.nC2/
.

43



The second term on the right hand side of equation (48) is mean zero, converges to

normality for large k by the central limit theorem, and has a variance of approximately

kVar
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�

D k
�

1 C �n;k�n;k � �2
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�

: (51)
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where we have again used the fact that the top k order statistics of a uniform random

variable are distributed jointly uniformly over the interval exceeding the next highest

order statistic. Its variance is
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For the second term on the right hand side of the previous equation,
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where the last line follows from the known conditional moments of the normal

distribution.

For the first term on the right hand side of equation (57), note that
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where the last equality follows from the results of equation (50), together with the
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Estimator performance is improved, as when k D n, by replacing p with np

nC1
, to

correct for the fact that the true distribution has positive skew and excess kurtosis.
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B Additional Figures and Tables

Table B.1. Comparison of signal-weighting schemes, value weighted strategies
The table reports results from time-series regressions of the return of signal and
capitalization weighted value or momentum strategies (panels A and B, respectively)
onto other strategies constructed using the same sorting variable but different signal
parameterizations (z-score, rank, or top/bottom 35% indicators). Strategies are long/short.
The weighting schemes include a standard quantile sort (rtertile, using top and bottom
35%), and strategies that weight stocks on the basis of how far an individual stock’s market
capitalization times signal (rank or z-score) are from the cross-sectional average (rrank and
rz-score, respectively). Data come from CRSP and Compustat, and the sample runs from
July 1963 through December 2014).

Dependent variable
Independent
variable rz-score rtertile rrank

Panel A: Value strategies

˛ -0.03 0.01 0.06 0.06 -0.04 -0.00
[-0.62] [0.48] [1.49] [1.79] [-1.09] [-0.22]

rz-score 0.93 0.96
[65.4] [81.2]

rtertile 0.93 0.99
[65.4] [202.1]

rrank 0.99 0.96
[202.1] [81.2]

OR2 (%) 87.4 98.5 87.4 91.4 91.4 98.5

Panel B: Momentum strategies

˛ 0.06 0.02 0.07 0.07 0.02 -0.01
[0.70] [0.81] [0.85] [0.92] [0.30] [-0.37]

rz-score 0.90 0.93
[50.0] [64.1]

rtertile 0.90 0.99
[50.0] [181.8]

rrank 0.99 0.93
[181.8] [64.1]

OR2 (%) 80.2 98.2 80.2 87.0 87.0 98.2
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Fig. B.1. Growth of a dollar, differently constructed cap-weighted value and momentum strategies.

The figure shows the performance of long/short strategies selected on the basis of book-to-market

(top panel, rebalanced annually at the end of June) and performance over the first eleven months

of the preceding month (bottom panel, rebalanced monthly). Strategies are tercile sorted (top and

bottom 35%, value weighted), or weighted in proportion to the percentile rank or z-score of the stock

selection variable and individual stock market capitalizations. Signal-weighted strategies are levered

to run at the average in-sample volatility observed on the tertile sorted strategy (10.0% for value

and 16.8% for then momentum strategies, respectively). Data come from CRSP and Compustat.

The sample covers July 1963 through December 2014.
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