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1 Introduction

Residents of declining cities consume “too much” housing services. The current population of

Detroit, given a clean slate on which to build and resources sufficient to duplicate the current scale

of the city, would not choose to do so.

The same investment irreversibility that locks households into sub-optimally high levels of hous-

ing consumption in bad times leads to “too little” investment in new housing, and consequently too

little housing consumption, in good times. Developers hedge against possible future regret– which

can occur because drops in demand cannot be offset by drops in supply– by building less than they

would if investment were reversible. As a result, households and businesses consume too little

housing in areas experiencing growth, in the sense that the marginal impact of new development

on felicity (i.e., the relative price of housing services) exceeds the marginal impact on felicity from

alternative uses of capital.

Large sectors of the economy are characterized by similar frictions, which prevent the continual

allocation of capital to its most productive use. While real estate is an obvious, important, example

of an industry characterized by irreversible investment and fixed adjustment costs, most investment

is subject to these frictions. Semiconductor manufacturers spend billions on the facilities that will

fabricate their next generation of chips, capital that has essentially no alternative use. Cellular phone

service providers incur huge fixed costs developing the network for their next generation of service,

investment that renders their existing network obsolete and is itself destined for obsolescence.

These frictions differ fundamentally from those considered by Grossman and Laroque (1990),

who examine how transaction costs at the consumer level, resulting from the absence of a rental

market, affect individuals’ consumption of durables, while implicitly allowing for frictionless ad-

justments in the aggregate stock of durables. In order to highlight the impact of investment frictions

that prevent costless adjustment in the stock of durables, we will assume a perfect rental market ex-

ists for the service flow provided by durables, allowing individuals to frictionlessly adjust the level

of consumption of these services.

These investment frictions, by preventing the continual allocation of capital to its most pro-

ductive use, have important, but largely ignored, economic consequences. The unavoidable mis-

allocation of capital caused by these frictions leads to a sub-optimal composition of consumption,

with marginal felicity from investment in new productive capacity differing across goods. This

misallocation affects both the marginal rate of substitution across time and the riskiness of future
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consumption, and thus both interest rates and equity premia.

Piazzesi, Schneider and Tuzel (2005) (hereafter “PST”) also consider how the composition of

housing and non-housing consumption affects the marginal rate of substitution when utility is non-

separable, and show that housing’s expenditure share forecasts excess returns on stocks.1 They

focus on the consumption side, however, taking the supply of housing as exogenous. In this paper

supply is endogenous, and consistent with developers maximizing property value subject to con-

straints imposed by construction technology.2 We focus on the restrictions that irreversibility and

adjustment costs place on the equilibrium evolution of supply, and how these restrictions, which

limit aggregate adjustments in the composition of consumption, impact interest rates, risk premia

and forward prices.

The impact of the misallocation of capital that results from investment constraints depends fun-

damentally on the business cycle, because the underlying friction, irreversibility, is asymmetric.

Investment constraints bind in recessions, when irreversibility prevents the reallocation of capital to

more productive uses, but not in expansions, when investment naturally occurs in the sectors char-

acterized by irreversibility. Consequently, the impact of sub-optimal capital allocation is greater

in weak economic environments and at shorter horizons. Conversely, in strong economic environ-

ments, and at longer horizons, the relatively high supply elasticity of the goods produced by the

sectors characterized by irreversibility mitigate the impact of these investment frictions.

In order to study the aggregate economic effects of irreversibility in greater detail, we intro-

duce a preference based, general equilibrium model with two consumption goods and irreversible

investment. We explicitly characterize the optimal investment plan of competitive heterogeneous

agents. We then generate analytic expressions for the term structures of interest rates and interest

rate volatilities, consumption risk premia, and forward prices and forward price volatilities, which

facilitates our study of business cycle implications. Note these results are qualitative in nature, and

not intended to address the equity premium puzzle. Our model employs standard constant relative

risk aversion (CRRA) preferences over the aggregate consumption bundle. Generating a signifi-

cant equity premium with these preferences requires highly volatile aggregate consumption, and

1 Yogo (2006) also considers the impact on asset returns of nonseparable utility over durable and nondurable con-

sumption, but with a definition of durables that excludes real estate.
2 Mamaysky (2001) also considers endogenous durable goods production when consumers have nonseparable pref-

erences. The investment technology he considers, however, is linear, incremental and free of adjustment costs, and is

consequently ill-suited to studying real estate development. His results, which are qualitatively different from those

presented here, are driven by a counter-cyclical rate of nondurable consumption.
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consequently implausibly high volatility in some significant component (or components) of con-

sumption.3

These results will also depend implicitly on the choice of numeraire, because the inter-temporal

rate of substitution for one good depends, when using an alternative numeraire, on both the inter-

temporal rate of substitution and relative prices. That is, the “risk-free” interest rate with respect to

one numeraire involves price speculation with respect to any other.

Rather than using any particular consumption good as numeraire, we will use appropriately ag-

gregated consumption. While this choice is relatively standard in the Macro literature, it represents

a departure from the (relatively limited) literature on asset pricing in multi-good economies, which

typically chooses one consumption good arbitrarily as numeraire.4 Using aggregated consumption

has three great advantages over using an arbitrary consumption good: it yields results that are di-

rectly welfare relevant, makes the role of relative price changes clear, and is consistent with standard

practice in the real world.5

Irreversible investment tends to occur in expansions, i.e., in periods in which output grows

faster than its unconditional mean. Developers are more likely to build new buildings when the

non-housing sector grows faster than average. But this investment also causes consumption to grow

faster: when the investment constraint does not bind we see welfare improving adjustments in the

composition of consumption. These have a direct, positive impact on GDP. That is, nonseparable

preferences and the irreversibility constraint together generate time-series variation in the sensitivity

of real consumption growth to fundamental shocks, with consumption more exposed to fundamen-

tals when the irreversibility constraint does not bind.

Because consumption grows faster when the irreversibility constraint does not bind and in-

vestment induces welfare improving adjustments in the composition of consumption, expansionary

economies are associated with a quickly declining marginal rate of substitution, and consequently

higher real interest rates. The short and long ends of the term structure have different sensitivities to

economic conditions, however, resulting in a term structure slope that is hump-shaped in economic

3 PST generate a significant equity premia using similar preferences and data on the housing consumption share. There

calibration, however, implies implausible variation in the level of housing consumption. This is discussed in greater detail

in appendix A.
4 See, for example, Richard and Sundaresan (1981), Sundaresan (1984), Mamaysky (2001), Kogan (2001), and

Gomes, Kogan and Yogo (2006).
5 Results in this numeraire are consistent with those we would get if we included money explicitly as the medium

of transaction for consumption goods, and adjusted nominal dollar results for inflation by deflating price with a chained

Fisher index, consistent with the methodology employed by the U.S. Department of Commerce’s Bureau of Economic

Analysis (BEA) when compiling the National Income and Product Accounts (NIPA).
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strength. The model predicts a term structure that is low and flat in deep recessions, low and upward

sloping in mild recessions, high and flat in average economic conditions, and high and downward

sloping in expansions. The model also predicts a volatility term structure that is unconditionally

downward sloping, but conditionally hump-shaped, with a peak that is higher and closer to the short

end in stronger economies. Together these imply that the slopes of the term structures of interest

rates and interest rate volatilities correlate positively.

Irreversibility and adjustment costs also result in pro-cyclical consumption risk premia. Adjust-

ments in the composition of consumption amplify the impact of fundamental shocks on aggregate

consumption, but these adjustments only occur in expansions, making consumption more variable

in strong economic environments and at longer horizons, when adjustments are more likely. Con-

sequently, the term structure of consumption risk premia slopes upward, and more steeply so in

expansions than in recessions.

Forward prices, relative to spot prices, are pro-cyclical for the non-housing good, but counter-

cyclical for housing services. Absent the development of new buildings, because of both natural

growth in the non-housing sector and depreciation in the housing sector, the price of non-housing

goods tends to fall, and the price of housing services tends to rise. That is, in recessions, when the

investment constraint binds and non-housing goods are becoming relatively plentiful while housing

services become increasingly scarce, forward markets for the non-housing good are backwardated

(downward sloping, with the price for future delivery lower than the spot), while forward mar-

kets for housing services are in contango (upward sloping, with the price for future delivery higher

than the spot). In expansions, when non-housing capital is diverted to the housing sector making

non-housing capital relatively scarce and housing capital relatively plentiful, the situation is re-

versed, with non-housing good forward markets in contango and housing services forward markets

backwardated. The Samuelson hypothesis holds for both consumption goods, with forward price

volatility decreasing with time-to-delivery. Growth in the supply of non-housing capital, which

lowers the price of the non-housing good, leads to a diversion of resources into the housing sector,

raising the price of the non-housing good, partially off-setting the price impact of natural growth.

Growth in the supply of non-housing capital also raises the price of housing services, but diversion

of resources into the housing sector lowers the price of housing services, again off-setting the price

impact of natural growth. We also see more forward price volatility in recessions, because supply

is less elastic. Because strong economic conditions result in steeply downward sloping forward
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price volatilities, the slopes of the term structures of forward prices and forward price volatilities

are negatively correlated for non-housing goods and positively correlated for housing services.

A significant, pro-cyclical component of the aggregate value of real estate is due to growth

options, i.e., the right to redevelop on a larger scale in the future. This component of value exhibits

a high degree of cross sectional variation. For our default parameterization, the contribution of real

options to overall value ranges from under two percent for large buildings to more than 40 percent

for small buildings, and accounts for eight to eleven percent of value in the aggregate.

Real options contribute to a building’s value without contributing to its current revenues, so

smaller buildings, for which real options represent a more significant component of value, have

lower capitalization rates than large buildings. Because real options’ contribution to buildings’ val-

ues is pro-cyclical, the cap-rate spread between large and small buildings is also pro-cyclical. Be-

cause development of new buildings tends to occur in expansions, this implies that cap-rate spreads

between new and old buildings predict new development: new development is more likely to occur

when the cap-rate spread is high.

Consistent with observed investment patterns in real estate markets, and more generally the

micro-evidence on plant-level investment, investment at the project level is lumpy, characterized by

periods of intense activity between which no investment occurs. The model allows for an explicit

characterization of the expected time between capacity adjustments, and the dependence of this

timing on the magnitude of the adjustment costs associated with investment, providing additional

cross-sectional implications.

Finally, the analysis predicts a “natural” degree of heterogeneity, i.e., a specific distribution of

the density of development. In particular, the model predicts that the ratio of the sizes of the tallest

and shortest buildings in the city will depend in a well defined way on the economic primatives,

and that there will be fewer tall buildings, with the number of buildings of a given size inversely

related to size. The degree of heterogeneity is, however, less than is socially optimal. Competition

leads developers to incur the adjustment costs associated with redevelopment (loss of capital-in-

place) “too soon,” which leads to development on a scale that is too small to efficiently utilize the

resources employed, resulting in a dead weight loss.

The remainder of the paper is organized as follows. Section 2 presents the model. Section 3

motivates the strategy developers employ in equilibrium heuristically, and section 4 demonstrate

the equilibrium formally. Section 5 considers properties of the equilibrium, including the expec-
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tation and variance of time between capacity adjustments, and the equilibrium level of economic

heterogeneity, and how this heterogeneity differs from the socially optimal level. Section 6 derives

the term structures of expected consumption growth and expected consumption growth volatility,

and how these vary over the business cycle. Sections 7 and 8 consider asset pricing implications,

deriving the term structures of interest rates and consumption risk premia, and the expected returns

on real assets, respectively. Sections 9 concludes.

2 The Model

We will think informally of the model, an extended “Lucas-tree” economy, as consisting of apple

trees and buildings. Apple trees grow in the “country” and provide a flow of a consumption good,

apples. They may also be used to build buildings in the “city,” which provide a service flow, housing.

Formally, we have an economy in which there are two non-storable consumption goods, “non-

housing goods and services” and “housing services.” These goods are produced by firms and con-

sumed by households.

A continuum of competitive, value maximizing firms owns all the means of production in the

economy, non-housing capital and “buildings,” where a building consists of a quantity of housing

capital together with the site on which this housing capital is located. These sites exist in fixed

supply. Ownership of the means of production is widely dispersed among firms, so each firm’s

holdings of each type of capital are small (i.e., infinitesimal) relative to the corresponding aggregate.

Firms sell their output in a competitive goods market, through which households purchase the

goods and services they consume. Firms are owned by, and pay dividends to, households. Owner-

ship is widely dispersed among households, so each household’s indirect holdings of each type of

capital are small relative to the corresponding aggregate.

2.1 Production and Capital

Flows of the two goods are costlessly produced in proportion to the quantity of the corresponding

capital stocks employed in their productions. Because production is proportional to the levels of the

stocks, we will use Yt and Qt to denote both the aggregate time-t flows of non-housing goods and

housing services, respectively, and the aggregate time-t levels of the corresponding stocks.
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2.1.1 Non-Housing Capital

The non-housing capital stock, in addition to producing a flow of the non-housing good, grows

stochastically over time according to a technology with constant returns to scale, and may also be

converted irreversibly into housing capital, i.e., apple trees grow, and may be used to construct

buildings. The instantaneous evolution of the aggregate non-housing capital stock is therefore given

by

dYt D Yt

�
dXt

Xt

�

� dIt (1)

where Xt is the natural growth process for non-housing capital and dIt is the quantity of non-

housing capital diverted to the housing sector over the interval. The natural growth process Xt

evolves according to

dXt D Xt �X dt C Xt �X dBt (2)

where �X is the average growth rate for non-housing capital in the absence of conversion to housing

capital, �X is the volatility of the growth, and dBt is an increment to a standard Wiener process.

Cumulative real investment in housing up to time-t , It , is a non-negative, non-decreasing singular

process.

2.1.2 Housing Capital

Housing capital exists at sites with a measure normalized to one. This housing capital naturally

depreciates at a constant rate ı, and the aggregate stock increases only when firms that own sites,

whom we will refer to as “developers,” convert non-housing capital irreversibly into housing capital.

That is, the “city” grows in response to development, and buildings (or the quality of the service

flow they provide) depreciate over time. The instantaneous evolution of the aggregate housing

capital stock is therefore given by

dQt D �Qtıdt C dIt

NCRt
(3)

where ı is the depreciation rate, dIt is the quantity of non-housing capital employed developing

housing capital over the interval, and NCRt is the time-t “net unit conversion rate.” This net unit
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conversion rate will depend, due to the nature of the conversion technology, on both 1) the timing of

the capacity adjustment, and 2) on which developers are building and at what scale. The conversion

rate will thus be determined endogenously as part of the equilibrium strategy.

The conversion technology available to developers entails adjustment costs, has decreasing

returns-to-scale, and varies over time. Specifically, the “cost,” in non-housing capital, of adjust-

ing the capacity at a site from qold to qnew at time t is

ct K .qold; qnew/ (4)

where ct is the inverse productivity of vintage-t housing capital (or time-t “conversion rate”) and

K .�; �/ is the adjustment cost function. The inverse productivity of vintage-t housing capital evolves

according to

dct D ct �cdt C ct �cdB 0
t (5)

where EŒdBt dB 0
t � D �dt .6 The adjustment cost function is homogenous degree-� > 1 in the pre-

and post-development capacities jointly. It includes both “fixed” and “variable” costs of adjusting,

which are respectively independent of, and dependent on, the magnitude of the adjustment. The

variable cost is assumed to be increasing in the magnitude of the adjustment, and sufficiently con-

vex to guarantee a unique solution to the firm’s problem. Taken together these assumptions imply

K.x; y/ D x�K .y=x/ where K .x/ � K .1; x/ (homogenous degree-�), K.1/ > 0 (fixed adjust-

ment costs), K0.x/ > 0 (costs increase in the magnitude of the adjustment) and
�

K.x/1=�
�00

� 0

(guarantees uniqueness).

When we make explicit calculations that depend on the specification of K.�/, we will assume

fixed adjustment costs that are proportional to the existing capacity and variable (direct) costs that

are Cobb-Douglas in the “deficit” between the desired capacity and the existing capacity less the

loss from adjustment. That is, we will assume that the cost of investing is .qnew � .1 � �/qold/�

where � parameterizes the magnitude of the fixed adjustment costs and � parameterizes the cost-

6 Including the stochastic conversion rate is trivial in a risk-neutral framework in which the price of housing services

follows an exogenously specified time-homogenous diffusion process, as a firm’s problem is then linear-homogenous in

costs and prices jointly. In this case only a single source of uncertainty, the ratio of the two processes, is relevant for the

firm’s investment strategy. Both sources of uncertainty remain relevant in the general equilibrium framework, however,

because the pricing kernel, which is endogenous and non-trivial, depends directly on the evolution of the non-housing

capital stock but only indirectly, through firms’ equilibrium investment strategy, on the conversion rate.
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to-scale of development, in which case K.x/ D .x � 1 C �/�. We will pay particular attention to

the parameterization � D 1, in which case K .qold; qnew/ D q
�
new, independent of qold. This specifi-

cation is common in the real estate literature, or more generally in the literature on development of

real assets with capacity choice. It corresponds to the case when development entails abandonment

of the existing capital at the site, e.g., when a developer razes an existing building so that she can

build a new, larger building in its place.

2.2 Preferences

Households’ preferences admit a representative consumer with standard CRRA preferences over

aggregate consumption Ct D Y a
t Q1�a

t for some constant a 2 .0; 1/,

Et

�Z 1

0

e��su .CtCs/ ds

�

(6)

where u .Ct/ D C
1�

C
t = .1 � 

C
/, and the rate of time preference � and the coefficient of CRRA


C

� 0 are both constant.7 The Cobb-Douglas consumption aggregator implies a unitary elasticity

of intra-temporal elasticity. While restrictive, this assumption is roughly consistent with the data,

which shows very little variation in the expenditure shares on housing (see, for example, PST). We

will generally restrict attention to the case when the elasticity of inter-temporal substitution exceeds

the elasticity of intra-temporal substitution, i.e., to the case when 
C

> 1.8

3 Motivating the Equilibrium Analysis

Before formally demonstrating an equilibrium of this economy, we will heuristically motivate the

general form of the investment strategy that developers employ in equilibrium, and consider some

general properties of the evolution of aggregate variables that result from this behavior. We will

formalize the equilibrium argument in section 4.

Demonstrating the formal equilibrium will be complicated by the fact that competitive agents’

behavior is inconsistent with the solution to the social planner’s problem. Real estate development

entails large opportunity costs. Developing a building requires forgoing any ongoing assets that

7 Of course when 
C

D 1 equation (6) should use the log formulation, and utility is separable over the two goods.
8 While non-housing goods and housing services are neither Hicksian compliments nor substitutes, because the intra-

temporal elasticity of substitution is exactly one, if 
C

> 1 then u
YQ

< 0 and marginal utility with respect to one good

is decreasing in the level of the other.
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exist at the site, i.e., in order to redevelop a lot, the developer must tear down whatever already

exists there. The loss of assets-in-place constitutes a fixed adjustment cost, and prevents incremental

adjustments to the capital stock at any given address. These fixed adjustment costs mean developers’

production sets are nonconvex, so the second welfare theorem does not apply. We cannot, therefore,

solve the planner’s problem to find the competitive equilibrium, and will be forced to consider the

investment problem from the points of view of individual agents in the economy.

In considering firms’ equilibrium investment behavior it proves convienient to use the non-

housing consumption good, not aggregate consumption, as numeraire. Calculations using this nu-

meraire are facilitated by employing an alternative representation for instantaneous utility, given

by

u .Yt ; Qt/ D sign .1 � 
C

/

 

Y
1�

Y
t

1 � 
Y

!
0

@
Q

1�
Q

t

1 � 
Q

1

A (7)

where y � 1 � a.1 � 
C

/ and q � 1 � .1 � a/.1 � 
C

/ are the representative consumer’s risk

aversion parameters for each of the consumption goods individually, and the constraints on a and


C

imply that y, q , .1 � y/.1 � q/ and y C q � 1 are all non-negative.

3.1 The Developer’s Problem

Developers invest to maximize value, i.e., to maximize the expected discounted cash flows net

of construction costs, where both the discount factor and the price of a project’s output (housing

services) are determined by the representative consumer’s preferences and the evolution of the con-

sumption processes, and consequently depend on the investment strategies other developers employ

in equilibrium. Because investment entails a discrete adjustment cost, any given developer’s invest-

ment plan will consist of discrete times ti at which she develops to capacities qi for i D 1; 2; :::.

The value of a site with capacity qt , when the current aggregate production of the two goods are Yt

and Qt and the conversion rate is ct , is therefore

V.qt ; Yt ; Qt ; ct/ D max
fti ;qi g

Et

�Z 1

0

e��s�Y
t;s

�

QqtCsPtCsds � dCtCs

�
ˇ
ˇ
ˇYt ; Qt; ct

�

(8)

where for notational convenience we let Zt;s � ZtCs=Zt for any process Zt , and

� e��s�Y
t;s is the representative consumer’s marginal rate of substitution between t and t C s for
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the numeraire (non-housing) consumption good, and

�Y
t;s D uY .YtCs ; QtCs/

uY .Yt ; Qt/
D Y

�
Y

t;s Q
1�

Q

t;s ; (9)

� PtCs is the time-.t C s/ price of housing services, given by

PtCs D uQ.YtCs; QtCs/

uY .YtCs; QtCs/
D

�
1 � a

a

�
YtCs

QtCs
; (10)

which depends on other developers’ investment strategies through its dependence on the ag-

gregate state variables,

� QqtCs and dCtCs , housing capital at the site and the cost of investment, respectively, both

depend on the firm’s investment strategy and are given by

QqtCs D

8

<̂

ˆ
:

e�ısqt if t C s � t1

e�ı.tCs�ti /qi for ti < t C s � tiC1

dCtCs D

8

<̂

ˆ
:

cti Qq�
ti

K.qi = Qqti /…
I
ti

if t C s D ti for i D 1; 2; :::

0 otherwise

where …I
t is the unit price of non-housing capital at time-t (i.e., the time-t apple price of an

apple tree that provides a unit flow of apples), and is given by

…I
t D Et

�Z 1

0

e��s�Y
t;sXt;sds

�

: (11)

3.2 The General Form of the Investment Strategy

Because each firm is individually small, and takes the aggregate processes as given, we can think of

an individual firm’s value function as depending on Pt , ct and zt � Yt =
�

ct Q
�
t

�

, which contain the

same information as Yt , Qt and ct . That is, we can write the value of a firm with current capacity

qt as

V.qt ; Pt; ct ; zt/ D max
fti ;qig

Et

�Z 1

0

e��s�Y
t;s

�

QqtCsPtCsds � cti …I
ti

Qq�
ti

K.qi = Qqti /
�
ˇ
ˇ
ˇPt ; ct ; zt

�

:(12)
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If z is Markovian and the evolution of the log-pricing kernel and the log-price of housing ser-

vices only depend on z, then the finite dimensional distributions of �Y
t;s and Pt;s are independent

of �Y
t and Pt , and the right hand side of the previous equation is homogenous degree-� in q and

P 1=.��1/ jointly, so

V.kq; k��1P; c; z/ D k�V.q; P; c; z/: (13)

The right hand side of equation (12) is also homogenous degree-1 in P and c jointly so we can

rewrite the previous equation, after suppressing the dependence on z for notational convenience and

letting v.q; p/ � V.q; P; c/=c where p � P=c, as

v.q; p/ D q�v.1; q1��p/: (14)

This implies a multiplicative investment rule in p. A developer builds to some constant multiple

� (currently unknown) of its existing capacity q when the price of housing services scaled by the

conversion rate reaches q��1p�, where p� (also currently unknown) denotes the price/conversion

rate ratio at which a developer would optimally redevelop a site with unit capacity.

3.3 Evolution of the Aggregate Variables

Now suppose all developers follow a multiplicative investment strategy, with each redeveloping a

site by some constant factor � whenever p D P=c reaches some constant p� times the � � 1th

power of the site’s existing capacity. Suppose further that the initial distribution of projects’ log-

capacities is uniformly distributed between ln qmin
t and ln qmin

t C ln �, a distribution that is preserved

cross-sectionally by the investment strategy. Under these assumptions the next developer to build,

the one with the site currently developed at the lowest density, does so when

Pt

ct

�

qmin
t

���1
D p�: (15)

Given the assumed cross-sectional distribution of project capacities, the aggregate level of the

housing capital stock is Qt D
�

��1
ln �

�

qmin
t , which together with Pt D

�
1�a

a

�

Yt =Qt implies some

12



firm builds, and aggregate capacity is consequently increasing, whenever

zt � Yt

ct Q
�
t

D
�

1 � a

a

��
ln �

� � 1

���1

p� � z�: (16)

Because firms add capacity whenever zt reaches z�, we think of zt as related to the business

cycle. When zt is close to z�, near term expansions in the housing sector are likely, and we think

of these as strong, or expansionary, economic conditions. When zt is significantly below z�, near

term expansions in the housing sector are unlikely, and we think of these as weak, or recessionary,

economic conditions. Later we will show that the expected rate of consumption growth is increasing

in zt , which justifies this interpretation.

This business cycle variable zt evolves as a reflected geometric Brownian process. Below z� it

changes only in response to natural shocks to Xt and ct and the natural depreciation of Qt . At the

critical threshold z�, however, positive shocks to the non-housing capital stock / capital conversion

cost ratio yt � Yt =ct elicit investment, resulting in both a decrease in Yt and an increase in Qt ,

which prevents zt from ever exceeding z�. Because zt evolves as a reflected geometric Brownian

process we can write it in terms of the uncontrolled process �t � Y0X0;t =ct Q
�
t D z0e�ıt X0;t =c0;t

as

zt D z�
�

�t

Mt

�

(17)

where Mt D maxfz�; maxs<t f�sgg. On the interval .0; T � minfs > 0j�s D z�g/, i.e., up until

some firm invests, Mt D z�, so zt and �t agree. After T , Mt > z�, and equation (16) says

zt =z� D �t=Mt , i.e., that the geometric distance from the controlled process to the reflecting barrier

is the same as the geometric distance from the uncontrolled process to its maximum.

3.3.1 The Capital Stock Processes

At the barrier positive shocks elicit investment such that dzt D 0, so

d ln yt D �d ln Qt : (18)

The change in the housing capital stock in response to a positive shock at the investment bound-

13



ary may also be computed directly, and is given by

dQt D dIt

NCRt

(19)

where the numerator, dIt , is the quantity of the non-housing capital converted into housing capital,

and the denominator, NCRt is the time-t net unit conversion rate. The net unit conversion rate is

the time-t “cost” in non-housing capital of increasing the density of housing capital divided by the

net increase in density, ct

�

qmin
t

��
K.�/=

�

�qmin
t � qmin

t

�

, or simplifying using Qt D
�

��1
ln �

�

qmin
t ,

NCRt D ct K.�/ .Qt ln �/��1

.� � 1/�
: (20)

We may also explicitly calculate dIt , the numerator of equation (19), by noting that in the absence

of the control the stock of non-housing capital evolves according to the natural growth process ln Xt .

Adding the non-housing capital used to increase the housing capital stock back to the first stock we

have, therefore, that on the set on which development occurs

dYt C dIt

Yt
� dct

ct
D d ln xt (21)

where xt � Xt =ct .9 Solving for dIt yields

dIt D Yt .1 � !t/ d ln xt (22)

where !t � d ln yt =d ln xt .

Rewriting equation (18) using equations (19), (20) and (22), and the fact that Yt =ct Q
�
t D z� at

the investment boundary, gives

!t ln xt D �z�.1 � !t/ ln xt

K.�/

.��1/
� .ln �/��1

; (23)

9 Equation (21) implicitly uses the fact that on the set on which development occurs, which has measure zero, the

deterministic components contribute nothing to the evolutions of the processes, so we need only consider the stochastic

components, i.e., on the set in question d ln Xt D dXt =Xt and d ln ct D dct=ct .

14



which, solving for ! using z� D
�

a
1�a

� �
ln �
��1

���1
p�, implies

! D 1

1 C .1�a/K.�/
a�.��1/p�

2 .0; 1/ (24)

where we have dropped the subscript-t on ! because it is independent of the time at which devel-

opment occurs.

Equation (24) specifies the “resource division parameter,” i.e., the fraction, at the development

boundary, of the natural growth in the non-housing capital stock / conversion rate ratio that actually

contributes to growth in this ratio, with the complement applied to increasing the stock of housing

capital.

The non-housing capital stock process therefore evolves as

Y0;t D X0;t M
!�1
0;t (25)

where the first term quantifies the effect of natural growth on the stock and the second term accounts

for the diversion of a fraction 1 � ! of the natural growth in non-housing resources to the housing

sector. Equation (18) and the definition of ! also imply that d ln Qt D !
�

d ln xt at the development

boundary, so we can write the housing capital stock process as

Q0;t D e�ıt M
!=�
0;t (26)

where the first term quantifies the effect of natural depreciation on the stock and the second term

accounts for new development.

The two together imply that aggregate consumption Ct D Y a
t Q1�a

t evolves as

C0;t D e�.1�a/ıt Xa
0;t M

b
0;t (27)

where b D
�

a C 1�a
�

�

! � a. Note that the previous equation differs from that which would hold

absent the conversion technology only by the term M b
0;t , so this term captures the impact of the

existence of the technology, i.e., of new housing development.
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3.3.2 The Price of the Second Good and the Pricing Kernel

It is trivial, now that we have Yt and Qt in terms of �t and its history, to calculate the price of

housing services and the pricing kernel in terms of the same.

The scaled price pt D Pt =ct D
�

1�a
a

�

yt =Qt , so using x0;t D e��ıt �0;t

p0;t D e�.��1/ıt �0;t M
‰�1
0;t (28)

where ‰ D .� � 1/!=�. Unscaled, the price evolves as P0;t D eıtX0;t M
‰�1
0;t , where the X0;t

represents the effect of changes in housing demand induced by productivity shocks to production of

the numeraire good, and eıt and M ‰�1
0;t represent the effect of changes in supply due to depreciation

and new construction, respectively.

The pricing kernel is given by �Y
t D Y

�
Y

0;t Q
1�

Q

0;t , so using our formulae for the capital stock

processes we can rewrite the pricing kernel in terms of the underlying processes as

�Y
0;t D X

�
Y

0;t
„ ƒ‚ …

impact of

natural growth of

non�housing capital

M


Y
.1�!/

0;t
„ ƒ‚ …

impact of

resources diverted to
housing sector

e
�.1�

Q
/ıt

„ ƒ‚ …

impact of

natural depreciation

of housing stock

M

�

1�
Q

�

!=�

0;t :
„ ƒ‚ …

impact of

new housing

development

(29)

The first two terms quantify the impact of changes in the level of non-housing consumption on the

marginal utility of non-housing consumption, from natural growth in the non-housing sector and the

diversion of resources to the housing sector, respectively. The third and fourth terms quantify the

impact of changes in the level of housing consumption, from depreciation and new development.

Simplifying yields

�Y
0;t D e

�.1�
Q

/ıt
X

�
Y

0;t M �
0;t (30)

where � D .1 � !/
Y

C
�

1 � 
Q

�

!=�.10 Equation (30) has important asset pricing implications,

10 The kernel has an alternative, “observable” representation in terms of aggregate consumption of the numeraire

good and the price of the second good. Using the definition of 
Y

and 
Q

, we have that �Y
0;t D Y

�
Y

0;t Q
1�

Q

0;t D
Y

�
C

0;t

�

Q0;t =Y0;t

�.1�a/.1�
C

/
. Then using the fact that the price of housing services is proportional to the ratio of

non-housing and housing consumption, P0;t D Y0;t =Q0;t , we can express the kernel as

�Y
0;t D Y

�
C

0;t P
�.1�a/.1�

C
/

0;t :

Here the first term is the kernel in the standard Lucas economy, and reflects agents’ concern for (numeraire) consumption
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which depend qualitatively on the sign of �, which determines whether the net impact of diverting

resources from the non-housing sector to the housing sector increases (� > 0) or decreases (� < 0)

the representative consumer’s marginal utility from numeraire consumption. Pro-cyclicality of the

price of non-housing capital (a high price/earnings ratio for the non-housing sector when developers

are increasing the supply of housing) requires that � > 0, which places an upper bound on 
C

, the

consumer’s risk aversion over aggregate consumption.

Note that the evolution of the log-processes given in equations (28) and (30) depend on zt

(because Mt D �tz
�=zt ) but not on their own levels, which implies the multiplicative investment

strategy of section 3.2 used to generate these processes. This motivates our formal equilibrium

analysis, and in particular the explicit investment strategy we will hypothesize in section 4. Before

formalizing the equilibrium analysis, however, it is worthwhile to consider the evolution of the

aggregate processes, and in particular the capital stock (consumption) processes, Yt and Qt , the

price of housing services, Pt , and the business cycle proxy, zt .

3.4 Sample Paths

Figure 1 shows sample paths of the two capital stocks, the price of housing services, and the business

cycle proxy zt =z�. The non-housing capital stock (upper left) evolves as a geometric Brownian

process partially reflected at a stochastic barrier, the level of which depends both on the history of

the process and on the evolution of the inverse productivity process, ct . The housing capital stock,

which grows in response to development and decays in its absence, depreciates exponentially off

the set on which it is increasing, and on the set on which it is increasing the increments look like

those of the maximum of a geometric Brownian process. The price process (lower left), which is

proportional to the ratio of the two stock processes, appears stationary over long intervals, even

though it is not, as the growth of the two stock processes are highly correlated (endogenously). The

business cycle proxy zt =z� (lower right) evolves as a reflected geometric Brownian process. When

this ratio is close to one the housing stock is likely to expand in the near future. We associate these

times with economic expansion. When the ratio is significantly less than one it may be years before

significant development of new housing capacity. We identify these times with recessions.

risk, while the second term reflects their concern for “composition risk,” fluctuations in the real consumption of housing

services relative to other goods.
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Figure 1: Capital Stocks, Price of Housing Services, and the Business Cycle Proxy

Sample paths for the capital stock processes, Yt and Qt (upper left and upper right, respectively),

the price of housing services, Pt (lower left), and the business cycle proxy zt =z� (lower right).

Parameters used to generate the paths are �X D 0:02, �X D 0:1, �c D 0, �c D 0:03 and � D 0

for the technological shocks, and � D 1:5, ı D 0:01 and ! D 0:893 for the conversion technology

(consistent, we will see later, with K.q/ D q� , 
C

D 1:5 and a D 2=3).

4 Equilibrium

At this point we will formalize the argument given heuristically in the previous section, explicitly

calculating the optimal development strategy. The equilibrium concept we employ is competitive

equilibrium, and we assume agents have rational expectations.

Demonstrating an equilibrium amounts to solving a fixed-point problem. We will begin by hy-

pothesizing an explicit investment strategy that if “imposed” on all agents determines the evolution

of the capital stock processes, as functions of the evolution of the exogenous processes, the natu-

ral growth of non-housing capital and the productivity of housing capital of a given vintage. This

strategy will consequently determine the evolution of the price of housing services and the pric-

ing kernel, which depend on the consumption processes and the preferences of the representative

consumer. Value maximization then defines a mapping from the evolution of the price of housing
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services and the pricing kernel to investment strategies. An equilibrium strategy is a fixed point in

the composition mapping, which takes exogenously imposed strategies to their optimal responses.

The statement of the strategy hypothesis is facilitated by introducing the following notation. Let

Zt � .ln Xt ; � ln ct /
0 denote the vector of the log-natural growth of non-housing capital and the

log-productivity of vintage-t housing capital processes, and let M and † denote the associated drift

and variance-covariance matrices,

M � E ŒdZt �

dt
D

0

@
�X � �2

X

2

��c C �2
c

2

1

A (31)

† �
E
�

dZt dZ0
t

�

dt
D

0

@
�2

X
���X �c

���X�c �2
c

1

A : (32)

We will also let eX D .1; 0/0, 1 D .1; 1/0, and ˇ̌̌ � †1

10†1
, and use

�� � E Œd�t =�t �

dt
D 10M C 1

0†1

2
C �ı (33)

�� �

0

@

E
h

.d�t=�t/
2
i

dt

1

A

1=2

D
p

10†1 (34)

to denote the drift and volatility of �t � z0e�ıtX0;t =c0;t .

4.1 Strategy Hypothesis

The Strategy Hypothesis. Suppose that both

1. housing sites’ log-capacities are distributed uniformly between ln qmin
t and ln �qmin

t D ln qmax
t ,

where � is the (unique) solution in x > 1 to

.� � 1/K0.x/

K.x/
D �

x � 1
� �� � � � �

x.��1/.��1/ � x
(35)

where

‰� D ˛ C e0
X b C

�

1 � .1 � 
C

/
�

a C 1�a
�

��

! (36)

with ‰ D .� � 1/!=�, b D a .1 � 
C

/
�

eX �
�

e0
X ˇ̌̌
�

1
�

, and ˛ > 0 and ! 2 .0; 1/ solve,
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respectively, the following quadratic equations:

�

10M C �ı
�

˛ C
�

1
0†1

2

�

˛2 D � C .1 � 
C

/
�

.1 � a/ C a
�

e0
X ˇ̌̌
�

�
�

ı � b0M � b
0†b

2
(37)

.1 � a/ .‰� � 1/ ! D �a‰� .1 � !/ (38)

and,

2. the price of housing services, relative to the conversion rate, is “not too high,” satisfying

pt � q
��1
t p� where

p� D K.�/
�

1 � 1
‰�

�

.� � 1/
: (39)

Then firms optimally follow a capacity-dependent trigger strategy in the price/conversion-rate ratio,

with a firm with capacity qt optimally redeveloping to capacity �q� at � D minfs > t jPs=cs D
q

��1
s p�g.

4.2 Project Value

Consider the value of a particular project, supposing all other developers are “constrained” to follow

the hypothesized strategy, denoting the current time by 0 without loss of generality. Letting T D
mint>0fzt D z�g denote the stopping time for some developer first adding capacity under the

hypothesized strategy, we can write the value of an unconstrained developer as

V.q0; P0; c0; z0/ D E0

"
Z T

0

e��t�Y
0;t qt Ptdt C e��T �Y

0;T V.qT ; PT ; cT ; z�/

#

: (40)

The first term on the right hand side of the previous equation, using the fact that �t D zt < z�

and consequently Mt D z� for all t < T , may be written as

E0

"
Z T

0

e��t �Y
0;t qt Ptdt

#

D E0

"
Z T

0

e��t
�

e
�.1�

Q
/ıt

X
�

Y

0;t

��

e�ıt q0

��

eıtX0;t P0

�

dt

#

D q0P0

�

1 � E0

h

e�O�T X
1�

Y

0;T

i�

� (41)

where O� � � C .1 � 
Q

/ı, and � � E0

h
R1

0 e�O�t X
1�

Y

0;t dt
i

is the perpetuity factor for revenues

derived from buildings in the absence of new supply effects (i.e., in a world in which it is impossible
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to develop additional housing capacity).

The second term, using the degree-� homogeneity of V in q and P 1=.��1/ jointly, and that

P0;T =c0;T D e�.��1/ıT �0;T and �0;T D z�=z0, is

E0

h

e��T �Y
0;T c0;T V

�

e�ıT q0; e�.��1/ıT �0;T P0; c0; z�
�i

(42)

D E0

h

e�.�C�ı/T �Y
0;T c0;T

i

V
�

q0;
�

z�

z0

�

P0; c0; z�
�

:

Equations (40) through (42) taken together, after explicitly evaluating E0

h

e�O�T X
1�

Y

0;T

i

, � and

E0

h

e�.�C�ı/T �Y
0;T

c0;T

i

, yield the following proposition. The proofs of all propositions, in an

effort to avoid excessive expositional digression, are left for the appendix.

Proposition 4.1. The value of a project with current capacity q to an unconstrained developer is

V.q0; P0; c0; z0/ D q0P0� C
� z0

z�

�‰�C� h

V
�

q0;
�

z�

z0

�

P0; c0; z�
�

� q0

�
z�

z0

�

P0�
i

(43)

where ‰� is given in the Strategy Hypothesis (equation (36)), � D .1 � !/
Y

C
�

1 � 
Q

�

!=� and

� D 1

� � �
(44)

where � D .1 � 
Y

/
�

�X � 
Y

�2
X

=2
�

� .1 � 
Q

/ı.

Note that the perpetuity factor on the previous equation would be the price/earnings ratio of

non-housing capital if there were no conversion technology, i.e., in a Lucas economy in which the

representative agent has a coefficient of relative risk aversion of 
Y

and the rate of time preference

is adjusted to account for the impact of depreciation in the housing sector on the marginal utility of

non-housing consumption.

4.3 Value at the Development Boundary

Note that in equation (43) the value of building to an unconstrained developer only depends on

the developer’s strategy through V
�

q;
�

z�

z

�

p; c; z�
�

, the value at the time other developers start

to build new capacity. Therefore, in order to maximize the site’s value, we only need to find the

strategy that maximizes its value at the constrained firms’ development boundary.

We may similarly decompose the scaled value of the unconstrained developer’s project at the

constrained development boundary z�. Letting �� denote the level of � at which the unconstrained

21



developer optimally develops and � � mins>0f�tCs D ��g, we can write the scaled value of the

unconstrained firm at the development boundary z� as

V.qt ; Pt ; ct ; z�/ D Et

�Z �

0

e��s�Y
t;sqtCsPtCsds C e����Y

t;� V.qtC� ; PtC� ; ctC� ; z�/

�

:(45)

The first term on the right hand side of the previous equation is

Et

�Z �

0

e��s�Y
t;sqtCsPtCsds

�

D qt Pt Et

�Z �

0

e��s
�

e
�.1�

Q
/ıt

X
�

Y
t;s M �

t;s

�

Xt;sM ‰�1
t;s ds

�

D qt Pt Et

��Z 1

0

�
Z 1

�

�

e�O�� X
1�

Y
t;s M �C‰�1

t;s ds

�

(46)

D qt Pt

�

1 � ��C‰�1
t;� Et

h

e�O�� X
1�

Y
t;�

i�

…II

where …II � Et

h
R1

0
e�.�Cı/s�Y

t;sPt;sdsjzt D z�
i

is the perputuity factor for revenues derived

from housing capital at a time when the stock of housing capital is increasing.

The second term on the right hand side of equation (45), using the homogeneity of V in q and

P 1=.��1/, and Pt;�=ct;� D e�.��1/ı��‰
t;� , is

Et

h

e��� �Y
t;�ct;� V

�

e�ı�qt ; e�.��1/ı��‰
t;� Pt ; ct ; z�

�i

D Et

h

e�.�C�ı/� �Y
t;�ct;�

i

V
�

qt ; �‰
t;�Pt ; ct; z�

�

: (47)

Equations (45) through (47), after evaluating Et

h

e�O��X
1�

Y
t;�

i

, …II and Et

h

e�.�C�ı/��Y
t;� ct;�

i

explicitly, yield the following proposition.

Proposition 4.2. At the investment barrier z� the value of a project to an unconstrained developer

is given by

V.qt ; Pt; ct ; z�/ D qt Pt …II C
�

�t

��

�‰� �

V

�

qt ;
�

��

�t

�‰

Pt ; ct ; z�
�

� qt

�
��

�t

�‰

Pt …II

�

(48)

where � and ‰ are given in the Strategy Hypothesis,

…II D
�

‰� C � � 1

‰� � ‰

�

�; (49)

and � and � are given in Proposition 4.1.

The first term in equation (48) represents the value of assets-in-place, the expected value of the

appropriately discounted future revenues from the project’s existing capital stock. The second term

accounts for real option value, the value of the ability to increase production in the future, which
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represents a technological rent resulting from 1) the adjustment costs, which limit competition on

the intensive margin, and 2) the scarcity of sites, which limits competition on the extensive margin.

4.4 Optimal Development Strategy

Optimality and feasibility of the investment strategy requires that the value matching and smooth

pasting conditions hold, i.e., that project value is continuous and differentiable in the underlying

control across development. Assuming a firm initially endowed with a site developed to unit capac-

ity at time-t optimally chooses to redevelop the site to a multiple of q times its existing intensity at

time t C � , then

V.e�ı� ; PtC� ; ctC� ; z�/ D V.e�ı�q; PtC� ; ctC� ; z�/ � ctC� …I K.e�ı� q/ (50)

V�.e�ı� ; PtC� ; ctC� ; z�/ D V�.e�ı�q; PtC� ; ctC� ; z�/: (51)

Using the inherited joint homogeneity of v in q and p1=.��1/ and the homogeneity of K, to-

gether with the fact that qtC� D e�ı� and pt;� D e�.��1/ı� �‰
t;� , the previous equations imply

v
�

1; �‰
t;�pt

�

D v
�

q; �‰
t;�pt

�

� …I K.q/ (52)

v�

�

1; �‰
t;�pt

�

D v�

�

q; �‰
t;�pt

�

(53)

or, using the functional form for v implied by (48) and
dp
d�

ˇ
ˇ
zDz� D ‰p=� , that

�‰
t;�p …II C a1�

‰�
t;� D q

�
��

�

�‰

p …II C aq

�
��

�

�‰�

� …I K.q/ (54)

�‰
t;�p …II C �a1�

‰�
t;� D q�‰

t;�p …II C �aq�
‰�
t;� (55)

where ax D
�

v
�

x; .��=�/‰p
�

� x .��=�/‰p…II
�

. Solving these immediately yields

a1 � aq D …I K.q/

.� � 1/

�
�

��

�‰�

(56)

�‰
t;� D �…I K.q/

.� � 1/…II .q � 1/p
: (57)

Finally, the homogeneity of v, which implies v.q; p/ D q�v.1; p=q��1/, in conjunction with

the functional form for v given in equation (48), and the fact that .�=��/‰ is proportional to p,
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means that aq D q�C���� a1, or

a1 D a1 � aq

1 � q�C����
; (58)

which together with equations (56) and (57) yields

a1 D
 

…I K.q/

.� � 1/
�

1 � q�C����
�

! 

.� � 1/…II .q � 1/p

�…I K.q/

!�

: (59)

The developer maximizes project value, so the optimal strategy is the one that maximizes a1

over the choice variable q, i.e., to redevelop to � times existing capacity where

� D arg max
q>1

(

.q � 1/�

�

1 � q�C����
�

K.q/��1

)

: (60)

Proposition 4.3. Equation (60) defines � < 1 uniquely, and agrees with that given in equation

(35) in the Strategy Hypothesis.

We can also characterize the optimal development strategy in terms of the price of housing

services relative to the conversion rate. Solving for this price-cost ratio at the time of development,

ptC� D e�.��1/ı� �‰
t;�pt , using equation (57) and qtC� D e�ı�qt , yields

ptC� D q
��1
tC�

 

�…I K.�/

.� � 1/…II .� � 1/

!

; (61)

which, after evaluating …I and …II explicitly, yields the following proposition.

Proposition 4.4. The optimal investment strategy is the capacity-dependent trigger strategy in p,

the price of the numeraire consumption good relative to the conversion rate, given in the Strategy

Hypothesis: develop to capacity �q�� at �� � mins>t

n

ps D q
��1
s p�

o

where

p� D K.�/
�

1 � 1
‰�

�

.� � 1/
: (62)

4.5 Q-Theoretic Interpretation of the Equilibrium

Note that under the equilibrium strategy the value of revenues derived from a new unit of housing

capital is Pt …
II , the price of housing services times the unit value of revenues derived from housing
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services. The cost of a new unit of housing capacity is NCRt …
I , the net unit conversion rate times

the unit cost of non-housing capital. The price of housing services/net conversion rate ratio, after

substituting for NCRt and Pt and using the fact that at the time investment takes place Yt =ctQ
�
t D

z�, is given by

Pt

NCRt
D ‰�

‰� � 1
: (63)

Then using the fact that …II D
�

‰�C��1
‰��‰

�

� , as given in equation (49), and

…I D
�

‰� C � � 1

‰� � 1

�

�; (64)

calculated in the proof of propositions 4.4, we have that the value/cost ratio of net new housing

capital, i.e., Tobin’s Q of new housing capital, is equal to

Pt …
II

NCRt …I
D �

� � 1
: (65)

That is, the irreversible nature of the building decision leads developers to delay investing until the

value of additional new capacity exceeds the cost of development by a factor of 1 C 1=.� � 1/.

4.6 Explicit Valuation

Combining the results of Propositions 4.1, 4.2 and 4.4 produces a simple, explicit formula for a

building’s price/earnings ratio (inverse capitalization rate), which depends only on 1) the building’s

relative size (developmental density), and 2) how close the price of housing services/conversion

rate ratio is to the level that would induce the developer with the smallest project to alter capac-

ity immediately, i.e., to the business cycle proxy zt =z�. Note also that price/earnings ratios, and

consequently the following proposition, are independent of numeraire.

Proposition 4.5. …II
�

q=q; z=z�
�

� V
�

q; P; c; q
�

=qP , the price/earnings ratio of a building

with capacity q when the least developed site has capacity q, is given by

…II
�

q

q
; z

z�

�

D �C
�

z
z�

�‰�C��1
�
�

…II � �
�

C
�

q

q

�.��1/.��1/
�

��1

�.1���C����/

�

…II

�

(66)

where � and � are given in the strategy hypothesis, � and � are given in proposition 4.1, and …II
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is given in proposition 4.2.

In the previous equation, the first term is the unit value of revenue in an economy with no

conversion technology. The second term corrects for other firms’ supply responses, which come

sooner when economic conditions are strong, and have a negative impact on output prices, and

consequently on the unit value of revenue. These two terms together represent the unit value of

revenues from assets-in-place. The third term quantifies the value of the firm’s growth options, i.e.,

the value of its ability to increase capacity in the future, and represents economic rents that accrue

to the scarcity of the site.

Figure 2 shows inverse capitalization-rates (i.e., price/earnings ratios) for the largest and small-

est buildings in the economy, as a function of the business cycle proxy zt =z�. It also shows the

inverse cap-rate for non-housing capital (i.e., the dividend yield on apple trees), given by

…I
�

z
z�

�

D � C
�

z
z�

�‰�C��1
�

…I � �
�

: (67)

The difference in the price/earnings ratios of non-housing capital and buildings is always posi-

tive, and pro-cyclical. Housing assets-in-place are less exposed to the primary risk in the economy,

the natural growth of non-housing capital, and are less exposed in expansions than in recessions.

While the price of housing services is highly correlated with non-housing production, real estate

development is pro-cyclical and the price impact of new supply acts as a countervailing force, re-

ducing the exposure of housing assets-in-place to risk in the natural growth of non-housing capital.

The difference in the p/e ratios of small and large buildings is also always positive, i.e., large build-

ings have higher capitalization rates than small buildings, because a smaller building’s value has a

larger real options component, which does not generate current revenues. Because the real option

component is pro-cyclical, the difference in the p/e ratios of small and large buildings is also always

pro-cyclical, i.e., the cap-rate spread between recent construction and older buildings is increasing in

the strength of the economy. This cap-rate spread should, consequently, predict new development.

We can also use equation (66) to consider the contribution of growth options to a building’s value

in greater detail. The contribution of growth options to total value can be calculated by dividing the

third term of equation (66) by the total. The results of doing so are shown in figure 3 as a function

of the size of the building (log relative size) for two different states of the economy, a “strong”

economy, with zt at the 95% level of its stationary distribution (top curve), and a “weak” economy,
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Figure 2: Price/Earnings Ratios

Price/earnings ratios for non-housing capital (dashed line, top) and the smallest and largest building

(respectively solid line, middle, and bold solid line, bottom), as a function of the business cycle

proxy zt . Parameters are, for the conversion technology: K.q/ D q3=2 and ı D 0:01; for the agents’

preferences: � D 0:02, 
C

D 1:5, and a D 2=3; and for the technological shocks: �X D 0:02,

�X D 0:1, �c D 0, �c D 0:03 and � D 0 (giving ! D 0:882).

Non-Housing Capital

Smallest Building

Largest Building

Weaker (H State of the Economy H) Stronger

with zt at the 5% level (bottom curve).11 Not surprisingly, growth options are a more important

component of smaller buildings’ values, as these sites will be redeveloped sooner, so the value of the

revenues generated from future capacity is discounted less. Growth options’ contribution to value

is also pro-cyclical, again because strong economic conditions make near term development more

likely, and reduce the required discount on the associated revenues. While real options are relatively

unimportant for the value of large buildings, a change in zoning that prevents the owner of a small

building from redeveloping the site can reduce the building’s value by more than two fifths. Overall,

11 Brownian motion, reflected from above, has an exponential distribution with exponent 2�=�2. The stationary dis-

tribution of z=z�, which is a reflected geometric Brownian process, is therefore given by d�z=z� .x/ D P.ln z=z� D
ln x/d ln x D

�

2.�� � �2
�

=2/=�2
�

�

exp
��

2.�� � �2
�

=2/=�2
�

� 1
�

ln x
�

dx=x D
�

2�� =�2
�

� 1
�

x
2�� =�2

�
�2

dx. The

m-level of the stationary distribution, defined as the zm such that
R zm=z�

0 d�z=z� .z/ D m, is given by zm D
m

1=.2��=�2
�

�1/
z�.
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real option premia represent a significant component of the aggregate value of developed real estate,

contributing 8% of the aggregate value in the lower curve, and more than 11% of aggregate value in

the upper curve.
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%

Figure 3: Contribution of Growth Options to Total Value

Real option value as a percentage of total project value, as a function of relative size (smallest

building left, largest right). Top curve (bold, blue) shows an expansionary economy, with zt at the

95% level of the stationary distribution, while the bottom curve (thin, red) shows a weak economy,

with zt at the 5% level. Parameters are, for the conversion technology: K.q/ D q3=2 and ı D 0:01;

for the agents’ preferences: � D 0:02, 
C

D 1:5, and a D 2=3; and for the technological shocks:

�X D 0:02, �X D 0:1, �c D 0, �c D 0:03 and � D 0.
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5 Properties of the Equilibrium

Before delving into implications for economic growth and asset pricing, we will first consider some

basic properties of the equilibrium derived in the previous section. These basic properties include

the expected time between successive capacity adjustments, and the degree of heterogeneity in
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building sizes. We are interested in how the magnitude of adjustment costs impacts the frequency of

capacity adjustments and economic heterogeneity generally, i.e., beyond the context of real estate

development. We will therefore consider a more general adjustment cost specification in this sec-

tion. In particular, we will assume that K.x/ D .x �1C�/� where � parameterizes the magnitude

of the fixed cost of adjusting. If � is close to zero, then the fixed cost of adjusting is small. If

� D 1, then adjusting capacity entails the loss of all existing capacity and we recover the standard

real estate specification.

5.1 Time Between Capacity Adjustments

Investment is much lumpier at the individual project level than at the aggregate level, character-

ized by periods of intense activity between which very little investment occurs (Doms and Dunne

(1998)). We can study this “lumpiness” in investment in our setting in more detail by considering

the expected time between successive investments in a project, and the variance of this timing.

Let � and � 0 be the stopping time for successive developments. Using standard facts about

Brownian processes, together with ��;� 0 D p
1=‰
�;� 0 D �.��1/=‰ and ‰ D .��1/!=�, the expectation

and variance of time between capacity adjustments at a site are given by

EŒ� 0 � � � D
�
!

ln �

�� � �2
�

2

(68)

VarŒ� 0 � � � D EŒ� 0 � � �
�

��

��
� ��

2

�2
(69)

where �� D 10M C 1
0†1

2
C �ı and �2

�
D 10

†1.

Figure 4 shows the expectation and standard deviation of the time between successive capacity

adjustments (bold and thin solid curves (red), left hand scale), and the magnitude of these adjust-

ments (dashed curve (blue), right hand scale), as a function of the adjustment costs �, using our

standard parameterization for all other variables. Even small adjustment costs lead to lumpy invest-

ment, with firms adjusting capacity infrequently. In the figure adjustment costs of five percent lead

developers to increase capacity only every seven years, on average, with a standard deviation of

11 years, and to increase capacity by 10.8 percent when they do. With our standard real estate pa-

rameterization of � D 1, i.e., when redevelopment entails abandonment of assets-in-place, we see
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Figure 4: Expectation and Standard Deviation of Time Between Developments

Expectation and standard deviation of time between developments (solid bold and thin curves, re-

spectively; left hand scale), and magnitude of the capacity adjustment (dashed curve; right hand

scale), as a function of �, the magnitude of the adjustment costs. The lower panel shows a blow-up

of the lower left corner of the top panel. Agents’ preferences are given by � D 0:02, 
C

D 1:5, and

a D 2=3, the cost-to-scale of development is � D 1:5, the parameters for the stochastic processes

are �X D 0:02, �X D 0:1, �c D 0, �c D 0:03 and � D 0, and housing capital depreciates at

ı D 0:01.
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redevelopment on average every 105 years with a standard deviation of 43 years, with new capacity

4.7 times as large as that which it replaces.

These delays are even more pronounced, and produced by even smaller adjustment costs, if the

cost of development is closer to linear. With a cost-to-scale parameter of � D 1:1, for example,

adjustment costs of only one percent are required to induce firms to make 10.5 percent adjustments,

on average every six years, with a standard deviation of 12 years. With this � and � D 1 sites are

redeveloped on average every 186 years, with a standard deviation of 68 years, with new capacity

twenty times as large as that which it replaces.

5.2 Heterogeneity

In the competitive equilibrium, a developer optimally redevelops a project to � times its existing

capacity. The optimal timing of this development also depends fundamentally, through the depen-

dence of p�, on � (given in equation (39)). The parameter �, essentially a measure of heterogeneity

in the economy, is not arbitrary, but a fixed constant that depends on the economy’s primatives.

Again assuming K.x/ D .x � 1 C �/� , � is the solution in q > 1 to

1 C �
q�1

1 C �
q.��1/.��1/�1

D .� � 1/�

�
: (70)

This defines � uniquely, because the left hand side is monotonically decreasing for q > 1, taking

the limits one and .� � 1/.� � 1/ as q becomes large and approaches one from above, respectively,

and the right hand side lies in this interval. It also implies, as expected, that @�=@� < 0 (i.e., firms

are willing to make smaller capital stock adjustments when adjustment costs are smaller), because

the partial derivative of the left hand side with respect to � is strictly positive.

Figure 5 depicts the degree of heterogeneity in the economy, as functions of the primatives

to which it is most sensitive: the magnitude of the adjustment costs (�) and the cost-to-scale of

adding new capacity (�), and the impatience and risk aversion of the representative consumer (�

and C ). The figure shows that firms make larger, less frequent adjustments when the fixed cost of

adjustment is high (upper left), and smaller adjustments when the cost-to-scale is large (upper right).

Firms also make smaller, more frequent adjustments when the representative consumer is impatient

(bottom left), or has a strong motive to smooth consumption inter temporally (bottom right).

Importantly, we find a dead weight loss associated with competition, as the competitive equi-
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Figure 5: Heterogeneity (Development Multiple (���))

The ratio of the largest building in the economy to the smallest. Parameters are, for the conversion

technology: K.q/ D q3=2 and ı D 0:01; for the agents’ preferences: � D 0:02, 
C

D 1:5, and

a D 2=3; and for the technological shocks: �X D 0:02, �X D 0:1, �c D 0, �c D 0:03 and � D 0.

librium yields “too little” heterogeneity. A social planner would utilize the non-housing capital

stock more efficiently when developing real estate, by choosing the development multiple �� that

minimizes the net unit cost of new capacity,

�� D arg min
q>1

(

K.q/ .ln q/��1

.q � 1/�

)

; (71)

which implies that �� is the solution in q > 1 to

K0.q/

K.q/
D �

q � 1
� � � 1

q ln q
: (72)

This implies more heterogeneity than equation (35), the defining equation for �, which solves the

competitive developers’ investment problem. In the competitive equilibrium developers do not in-

ternalize the negative price externality of their own new capacity, and thus add new capacity “too
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soon,” on a scale that is too small to efficiently utilize the resources they employ. This has real

economic consequences, as the inefficient use of non-housing capital implies more resources are

expended than is necessary for any given increase in the housing capital stock. The associated dead

weight loss reduces the average growth rate of both stocks, so the competitive equilibrium growth

path diverges from the optimal growth path.

While equations (71) and (72) were derived under an explicit functional assumption regarding

the cost of new capacity, the intuition that competitive pressures lead developers to divert resources

to the housing sector inefficiently is quite general. Developers internalize the loss from adjustment

associated with their own development decision, but do not internalize the marginal impact their

investment decision has on the adjustment losses incurred by future developers. By building on a

larger scale, a developer would defer other developers’ investment, and thereby defer the deadweight

loss associated with this adjustment. Because developers do not internalize the full marginal benefits

of developing more intensely, they invest on too small a scale, resulting in a welfare loss.

6 Economic Growth

We will now turn our attention to the role equilibrium investment behavior plays in generating a

business cycle, in which the expected rate of consumption growth varies with economic conditions.

That is, we will explicitly consider the impact nonseparable preferences and the irreversibility con-

straint have on real consumption growth.

This forces us to make an explicit assumption regarding the “appropriate” numeraire.12 The

obvious choice is appropriately aggregated consumption, i.e., to measure consumption in the same

units that denominate the aggregate bundle Ct D Y a
t Q1�a

t . In this numeraire consumption is

unambiguously related to consumers’ quality of life.13

12 Up until now we have been able to avoid conclusions that depend on the choice of numeraire. However, when

considering growth of any sort the choice of numeraire has a direct material impact on the results, because relative prices

change over time. The role numeraire plays can be illustrated simply using “interest rates” as an example. The interest

rate is the yield on a default-free bond. In a multi-good economy, however, the “risk-free” asset in the numeraire of the

i th consumption good, a default-free bond that pays one unit of good i T in the future, involves price speculation from

the point of view of any other arbitrary numeraire,

Et

h

e��T � i
t;T

i

D Et

�

e��T

�
Uj .CtCT /

Uj .Ct /

��
Ui .CtCT / =Uj .CtCT /

Ui .Ct / =Uj .Ct /

��

D Et

h

e��T �
j
t;T

P
i=j
t;T

i

where P
i=j
t;T

is the price in good j of a unit of good i at time-t C T , relative to the price at time-t . Similarly, the expected

rate of consumption growth depends on what numeraire we use to measure consumption.
13 This numeraire also results if we assume that 1) consumption transactions are mediated, due to a cash in advance
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6.1 Consumption Growth

The expected average rate of consumption growth is 1
T

ln Et

�

Ct;T

�

. Explicitly evaluating using

Ct;T D e�.1�a/ıT Xa
t;T M b

t;T where b D 1�a
.��1/�

yields the following proposition.

Proposition 6.1. The expected growth rate of real consumption over the next time T is given by

�C
t .T / D �C C H

�
z�

zt
; aˇ

X;�
; b; T

�

(73)

where �C � a
�

�X C .a � 1/�2
X

=2
�

� .1 � a/ ı is the drift in aggregate consumption Ct absent

the diversion of new capital into the housing sector, b D .1 � a/=.� � 1/� > 0, and

H .x; u; v; T / D 1

T
ln
�

F .x; u; v; T / C eƒ.u;v/T G .x; u; v; T /
�

(74)

where

F .x; u; v; T / D N

 

ln x

��

p
T

� c
p

T

!

� �x2c=�� N

 

� ln x

��

p
T

� c
p

T

!

(75)

G .x; u; v; T / D .1 C �/x�vN

 

� ln x

��

p
T

C
�

c C v��

�p
T

!

(76)

ƒ.u; v/ D v

�

�� C .v C 2u � 1/
�2

�

2

�

(77)

where N.�/ denotes the cumulative normal, �� D 10M C 10
†1=2 C �ı, �2

�
D 10

†1, c �
�

��

��
� ��

2

�

C u�� and � � v��

2cCv��
.

In the previous proposition, the first term of equation (73) is the expected growth in consumption

absent the conversion technology, resulting from the natural growth of non-housing capital and the

depreciation of housing capital. The second term quantifies the impact of the conversion technology,

i.e., the effect of expected diversions of capital from the non-housing sector to the housing sector

on consumption growth.

Proposition 6.1 also gives, as a corollary, the volatility term structure of expected consumption

growth. The expected growth in consumption at any given horizon T is sensitive to both changes in

constraint on the purchase of consumption goods, in nominal “dollars” (fiat money), and 2) we adjust prices for inflation

using a chained Fisher index, like that used by the U.S. Department of Commerce’s Bureau of Economic Analysis when

compiling the National Income and Product Accounts. For details please see appendix C.
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Yt and ct , so T -growth rate volatility is given by

��.T / D

v
u
u
t

 

d�C
t .T /

d ln Xt
;
d�C

t .T /

�d ln ct

!

†

 

d�C
t .T /

d ln Xt
;
d�C

t .T /

�d ln ct

!0

: (78)

This, taken together with the result of Proposition 7.1 and the fact that d ln z
d ln X

D d ln z
�d ln c

D 1, yields

the following result.

Corollary 6.1. The volatility of T -ahead expected real consumption growth is given by

��.T / D z�

zt
H 0

�
z�

zt
; aˇ

X;�
; b; T

�

�� : (79)

where H 0 .x; a; b; T / D d
dx

H .x; a; b; T /.14

Figure 6 plots the term structure of expected consumption growth (top), and the volatility of

expected consumption growth (bottom), out to three years. These are depicted for five different sets

of economic conditions, from strong (blue) to weak (red), corresponding to the business cycle vari-

able z at the 95%, 75%, 50%, 25% and 5% levels of the stationary distribution. Both the expected

growth rate and the volatility in this expectation are increasing in the strength of the economy. The

bold lines show the growth rates and volatilities unconditionally.

In strong economic conditions the expected growth rate of aggregate consumption is high. At

these times the irreversibility constraint does not bind, and capital flows freely to its most productive

use, yielding welfare improving adjustments in the composition of consumption. This term structure

is downward sloping, reflecting the fact that the investment constraint is likely to bind at some

time in the future. In weak economic conditions, when the irreversibility constraint binds, the

expected rate of consumption growth is lower. In depressed economic conditions, especially over

short horizons when investment will almost certainly not occur, the expected growth rate is equal to

what it would be if there simply were no conversion technology. At these times the term structure is

upward sloping, reflecting the fact that the investment constraint might not bind at some point in the

future. In the long run expected consumption growth converges to its unconditional long-run mean,

given in the following corollary.

14H 0 has a straightforward analytic expression, which is not included here as it is complicated beyond simple economic

interpretation.
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Figure 6: Expected Consumption Growth and Expected Consumption Growth Volatility

The term structures of expected consumption growth (top) and expected consumption growth volatil-

ity (bottom), unconditional (bold lines) and conditional on the business cycle proxy at the 5%, 25%,

50%, 75%, and 95% levels (weakest economy to strongest from red to blue (bottom to top in both

figures)). Parameters are K.q/ D q3=2, ı D 0:01, � D 0:02, 
C

D 1:5, and a D 2=3, �X D 0:02,

�X D 0:1, �c D 0, �c D 0:03 and � D 0.
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Corollary 6.2. The long run average rate of real consumption growth, �C
1 D limT !1 �C

t .T /, is

given by

�C
1 D v0M C v0

†v

2
� .1 � a/

�

1 � !
‰�

�

ı (80)

where v D aeX C b1, which reduces, if �c D �c D 0, to

�C
1 D .a C b/

�

�X C .a C b � 1/
�2

X

2

�

� .1 � a/
�

1 � !
‰�

�

ı: (81)

The term structure of expected consumption growth rate volatility is relatively flat in weak eco-

nomic conditions, because investment remains unlikely even after positive shocks. Consequently,

while positive shocks increase consumption, they do not increase the expected rate of consumption

growth going forward, especially at shorter horizons. In stronger economic conditions the likelihood

that the investment constraint is relaxed at short horizons is sensitive to the state of the economy.

This results in more volatility in the expected rate of near term consumption growth, generating a

downward sloping term structure of expected consumption growth rate volatility.

7 Asset Pricing Implications

In the model presented here firms’ optimal microeconomic behavior has important macroeconomic

implications. In section 4 we determined the optimal equilibrium investment strategy of firms, and

doing so explicitly determined the equilibrium pricing kernel. This allows us to compute macro

asset pricing fundamentals, providing insight into how firms’ decisions impact the term structures

of real interest rates and interest rate volatility, the term structure of consumption risk premia, and

the term structures of forward prices and forward price volatilities, as well as how each of these

term structures varies over the business cycle. In section 8 we will also consider the effects of firms’

behavior on the real assets in the economy, determining the expected rates of return on non-housing

capital and buildings, and how these vary over the business cycle.

7.1 Risk-Free Rate

The real T -rate is given by r
f
t .T / D � 1

T
ln Et

h

e��T �C
t;T

i

, where �C
t;T D C

�
C

t;T . Aggregate

consumption, in terms of X and � , evolves as Ct;T D e�.1�a/ıT Xa
t;T

M b
t;T

where b D .1 �
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a/=.��1/� > 0. Note that consumption, in the numeraire of aggregate consumption, is less volatile

than non-housing consumption, because the elasticity of aggregate consumption with respect to

non-housing consumption is a < 1. Aggregate consumption also grows faster at the investment

boundary, because b > 0 implying the development of new housing is welfare improving. The

yield curve will therefore slope up in recessions, but down in expansions. Substituting for aggregate

consumption in the definition of r
f
t .T / and evaluating along the lines used in proving proposition

6.1 then yields the following proposition.

Proposition 7.1. The risk-free T -rate is given by

r
f
t .T / D � C 

C

�

�C � .
C

C 1/
�2

C

2

�

� H
�

z�

zt
; �a

C
ˇ

X;�
; �b

C
; T
�

(82)

were �C D a
�

�X C .a � 1/�2
X =2

�

� .1 � a/ ı and �C D a�X are the growth and volatility of

aggregate consumption absent development of new housing capacity, b D .1 � a/=.� � 1/� > 0,

and H is given in Proposition 6.1.

In equation (82), the first term quantifies consumers’ impatience, and the second quantifies

the effects of “natural” consumption growth, due to natural growth in the stock of non-housing

capital and natural depreciation of housing capital, on the marginal rate of substitution for aggregate

consumption. The third term, which depends on the “business cycle” variable zt=z�, quantifies the

impact of expected future diversions of non-housing resources into the housing sector.

Proposition 7.1 also gives, as a corollary, the term structure of real interest rate volatility. The

interest rate at any given horizon T is sensitive to both changes in Yt and ct , so T -rate volatility

is given by � i
r .T / D

s
�

dr
f
t .T /

d ln Xt
;

dr
f
t .T /

�d ln ct

�

†

�

dr
f
t .T /

d ln Xt
;

dr
f
t .T /

�d ln ct

�0
, which taken with the result of

Proposition 7.1 yields the following result.

Corollary 7.1. The volatility of the risk-free T -rate is given by

�r .T / D z�

zt
H 0

�
z�

zt
; �a

C
ˇ

X;�
; �b

C
; T
�

�� (83)

where H 0 .x; a; b; T / D d
dx

H .x; a; b; T /.

Figure 7 plots the term structure of interest rates (top) and interest rate volatilities (bottom) out

to three years. These are depicted for five different set of economic conditions, from strong (blue)

38



to weak (red), corresponding to the business cycle variable z at the 95%, 75%, 50%, 25% and 5%

levels of the stationary distribution. Both interest rates and interest rate volatilities are increasing

in the strength of the economy, properties inherited from the expected rate of consumption growth.

The bold lines show the unconditional yield curve and the unconditional term structure of interest

rate volatility.

In weak economic conditions there is some horizon over which firms are nearly certain not to

invest in new housing capital, and the risk-free rate agrees with the rate in an economy without the

conversion technology. The weaker the economy, the longer the horizon over which investment is

unlikely, resulting in a low, flat term structure in severe recession. As the economy strengthens, and

investment becomes more likely, the interest rate at these horizons begins to increase, resulting in a

low, upward sloping term structure. As the economy strengthens further, and investment becomes

more likely at shorter horizons, the short end begins to rise faster than the long end, resulting in

a high, flat term structure. Finally, as the economy strengthens still further, the short end rises

dramatically, resulting in a high, downward sloping term structure in expansions. Taken together,

these imply a term structure slope hump-shaped in the strength of the economy. In all cases the rates

asymptote to the “long rate,” given in the following corollary to Proposition 7.1.

Corollary 7.2. The “long rate” r
f
1 � limT !1 r

f
t;T

is given by
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which reduces, if �c D �c D 0, to

rf
1 D � C 

C

�

�C
1 � .

C
C 1/

��
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2

2

�

(85)

where �C
1 is the long run average rate of consumption growth, given in corollary 6.2, and ��

C
D

.a C b/ �X is the annualized variance of long run consumption growth.

7.2 The Term Structure of Consumption Risk Premia

To study consumption premia at different horizons we will analyze “consumption bonds.” These

mature on a fixed date, and pay a dividend that depends on the aggregate consumption basket on
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Figure 7: Term Structures of Interest Rates and Interest Rate Volatility

Term structure of interest rates (top) and interest rate volatility (bottom), unconditional (bold line)

and conditional on the business cycle proxy at the 5%, 25%, 50%, 75%, and 95% levels (strong

economy (top, blue), to weakest (bottom, red)). Parameters are, for the conversion technology:

K.q/ D q3=2 and ı D 0:01; for the agents’ preferences: � D 0:02, 
C

D 1:5, and a D 2=3; and for

the technological shocks: �X D 0:02, �X D 0:1, �c D 0, �c D 0:03 and � D 0.
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the date of maturity. The bond written at t maturing at t C T delivers Yt;T units of non-housing

goods and Qt;T units of housing services, i.e., a quantity of each good in proportion to the ratio of

the corresponding aggregate at maturity to the date of issue.

The expected return is the log of the expected pay off / issue price ratio, all divided by the time

to maturity, i.e.,

rc
t .T / D 1

T

�

ln Et

�

Ct;T

�

� ln Et

h

e��T C
1�

C

t;T

i�

: (86)

Evaluating the right hand side of the previous equation yields the following proposition.

Proposition 7.2. The expected yield on a consumption bond with T -to-maturity is
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were �C D a
�

�X C .a � 1/�2
X

=2
�

� .1 � a/ ı and �C D a�X are the growth and volatility of

aggregate consumption absent development of new housing capacity, b D .1 � a/=.� � 1/� > 0,

and H is given in Proposition 6.1.

Propositions 7.1 and 7.2 also provide, as an immediate corollary, the term structure of consump-

tion risk premia.

Corollary 7.3. The term structure of expected excess returns re
t .T / D rc

t .T / � r
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Figure 8 shows the term structure of consumption risk premia, i.e., the expected excess returns

to consumption bonds, out to three years, for the same levels of the business cycle proxy used in

Figure 7, the 5%, 25%, 50%, 75% and 95% levels of the stationary distribution (weak economic

conditions, bottom (red); strong economic conditions, top (blue)), and unconditionally (bold curve).

The consumption risk premium at any horizon is pro-cyclical, increasing with the strength of the

economy. In general, the premium agrees at the extreme short end with the consumption risk pre-

mium in an economy in which no conversion technology exists, as there are some horizons over
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which firms are nearly certain not to invest in new housing capital. It converges asymptotically to

the long horizon consumption risk premium, given in the following corollary.
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Figure 8: Consumption Risk Premium

Term structure of expected excess returns to consumption bonds, unconditional (bold line) and con-

ditional on the business cycle proxy at the 5%, 25%, 50%, 75%, and 95% levels (weakest economy

(bottom, red) to strongest (top, blue)). Parameters are, for the conversion technology: K.q/ D q3=2

and ı D 0:01; for the agents’ preferences: � D 0:02, 
C

D 1:5, and a D 2=3; and for the

technological shocks: �X D 0:02, �X D 0:1, �c D 0, �c D 0:03 and � D 0.
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Corollary 7.4. The “long rate” on consumption bonds rc
1 � limT !1 rc

t .T / is given by

rc
1 D rf

1 C 
C

.aeX C b1/0
† .aeX C b1/ (89)

which reduces, if �c D �c D 0, to
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where ��
C

D .a C b/ �X .
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7.3 Forward Prices of the Two Consumption Goods

The T -ahead forward price for delivery of the non-housing consumption good, or housing services,

is the risk-adjusted expected future spot price, so satisfies Et

h

e��T �C
t;T

�

P i
tCT � F i

t .T /
�
i

D 0

where the superscript i 2 .Y; Q/ denotes the consumption good. Forward prices are therefore given

by
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Switching numeraires in the numerator of the previous equation and taking logs yields
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where r i
t .T / � 1

T
ln Et

h

e��T �i
t;T

i

is the “interest rate,” using good i as numeraire, on a risk-free

bond that provides one unit of good i time-T in the future. That is, forward prices are given by

a commodities version of the familiar covered interest parity relation for forward exchange rates.

Calculating the “interest rates” in the numeraires of the non-housing consumption good and housing

services explicitly then yields the following proposition.

Proposition 7.3. The forward prices for delivery of the non-housing consumption good and housing

services time-T in the future are given by
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where r
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t .T / is given in proposition 7.1 and
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The proposition also yields, as a corollary, the term structures of the forward price volatilities.

The T -ahead delivery price volatility is � i
F

.T / D
r
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d ln F i
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d ln Xt
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which, taken with the result of Proposition 7.3 and using d ln P Y

d ln X
D a � 1, d ln P Q

d ln X
D a and
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d ln P Y

�d ln c
D d ln P Q

�d ln c
D 0, yields the following result.

Corollary 7.5. The volatilities of the T -ahead forward prices of non-housing consumption goods

and housing services are given by
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and H 0 .x; a; b; T / D d
dx

H .x; a; b; T /.

The term structure of forward prices and forward price volatility are given below, in Figure

9. In recessions, when housing consumption is high relative to non-housing consumption, natural

growth in the non-housing sector and depreciation in the housing sector both tend to make fu-

ture non-housing consumption relatively abundant, and thus relatively cheap, lowering its forward

price. Conversely, in expansions the expected diversion of resources to the housing sector raises the

expected future price of the non-housing goods, by both decreasing expected future non-housing

consumption and increasing expected housing consumption, which increases the price for future de-

livery. Consequently, the forward market for non-housing goods is backwardated in recessions and

in contango in expansions. The opposite holds true in the forward market for housing services. In

recessions the increasing relative scarcity of housing services generates an upward sloping forward

price curve, while in expansions the increasing relative abundance of housing services generates

downward sloping forward price curves.

The Samuelson Hypothesis holds in both markets, with forward price volatility increasing as

delivery approaches, i.e., the term structures of the forward price volatilities are downward sloping.

This reflects the fact that investment in the housing sector, which occurs in response to a high relative

price for housing services, reduces the relative price of these services. This generates mean reversion

in relative prices in expansions, or at long horizons, when housing supply is more elastic. These
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Figure 9: Forward Prices and Forward Price Volatilities

Forward price and forward price volatilities (top and bottom, respectively) for non-housing goods

and housing services (left and right, respectively), as functions of time-to-delivery. Figures show

these unconditionally (bold lines), and conditional on business cycle proxies at the 5%, 25%, 50%,

75%, and 95% levels, weakest to strongest from red to blue (bottom to top in the upper left panel,

top to bottom in the other panels). Parameters are, for the conversion technology: K.q/ D q3=2 and

ı D 0:01; for the agents’ preferences: � D 0:02, 
C

D 1:5, and a D 2=3; and for the technological

shocks: �X D 0:02, �X D 0:1, �c D 0, �c D 0:03 and � D 0.

term structures of forward price volatilities slope more steeply downward in stronger economic

conditions, so the term structures of forward prices and forward price volatilities correlate negatively

in the non-housing good forward market (i.e., the term structure of forward price volatility slopes

more steeply downward in contango markets than it does in backwardated markets), but correlate

positively in the housing services forward market (i.e., the term structure of forward price volatility

slopes more steeply downward in backwardated markets than it does in contango markets).
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8 Returns to Real Assets

We will now turn our attention to the expected excess returns of the real assets in the economy, and

how they vary over the business cycle. In particular, we will consider how much compensation,

in the form of expected returns, investors demand for exposure to aggregate uncertainty through

positions in non-housing capital and buildings, and how this compensation depends on the state of

the economy.

8.1 Expected Return to Non-Housing Capital

The total return on non-housing capital (or any asset) consists of two parts: the dividend yield,

which includes any “cash flows” to the asset holder, and the capital gain, which accounts for any

movements in the asset’s price, including those due to user costs (e.g., depreciation).

The dividend yield is the reciprocal of the price/earnings ratio, which we gave explicitly for

non-housing capital in equation (67). The value of non-housing capital is its price/earnings ratio

times its earnings, or
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where X is the capital’s output of the non-housing good and P Y is the price of the good. The

expected capital gain is the value weighted average of the expected capital gains of the two terms in

the previous equation. Using the fact that Xt;sP Y
t;s D e.a�1/ısXa

t;s D Ct;s on an interval on which

no new housing capital is developed, we then have that the expected return on non-housing capital in

the numeraire of aggregate consumption, including both the dividend yield and the expected capital

gain, is equal to
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where …I
�

z
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z
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�

is the price/earnings ratio for non-housing capital.

Evaluating the previous equation explicitly yields the following proposition.
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Proposition 8.1. The expected instantaneous total return to non-housing capital is
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where rc
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is the consumption bond short rate,

R, the expected return to holding business cycle risk, is given by
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where u � .‰� C � � 1/ 1 C aeX , and the weight on the expected return to business cycle risk is

given by w.x; y; ˛/�1 � 1 C x�.‰�C��1/
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.

The expected rate of return given in equation (102) is a weighted average of rC
0 , the expected

return to non-housing capital that would prevail if there were no technology for building new hous-

ing, and R, which represents a return to “business cycle risk,” where the weight on the consumption

bond short rate, 1 � w
�

zt

z� ; 0; �
�

, is just an explicit parameterization of �=…I
�

zt

z�

�

. Non-housing

capital is exposed to business cycle risk, because the diversion of non-housing capital to the hous-

ing sector in expansions results in a relative scarcity of non-housing consumption. This increases

the current value of expected future production, and consequently of the capital that produces non-

housing goods, especially in strong economic conditions when near-term conversion is more likely.

8.2 Expected Return to Buildings

The capitalization rate for buildings, i.e., a building’s dividend yield, was given explicitly in equation

(66). The value of a building is its cap-rate times the revenue it produces, or
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where q is the quantity of housing services provided by the building and P Q is the price of the

good. The expected capital gain is the value weighted average of the expected capital gains of the

terms of the previous equation. Using the fact that qt;sP
Q
t;s D e.a�1/ısXa

t;s D Ct;s on an interval

on which no new housing capital is developed, we then have that the instantaneous expected return
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on the building is given by
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Evaluating the previous equation explicitly yields the following proposition.

Proposition 8.2. The expected instantaneous total return to a building developed to q=q times the

minimum current density is
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where ‚ D ��1

�.1���C���� /
, and rc

0 , R and w.x; y; ˛/ are given in proposition 8.1.

Figure 10 shows the expected excess rates of return on non-housing capital and the smallest and

largest buildings in the economy, as functions of the business cycle variable z=z�. Buildings carry

a positive risk premium, because the value of housing assets-in-place is pro-cyclical, i.e., exposed

to consumption growth risk, rising with growth in the output of non-housing goods. This premium

is counter-cyclical, however, because the exposure of housing assets-in-place to natural growth in

the non-housing capital stock is mitigated, especially in strong economic conditions, by the fact that

rising non-housing consumption eventually elicits new housing, reducing the production-share of

assets-in-place. This supply effect partially offsets the demand effect: while increasing non-housing

good production has the direct effect of increasing the price of housing services, and consequently

the revenue from housing assets-in-place, its indirect effect is to elicit new housing supply, which

reduces the price of housing services, and consequently the revenues from existing housing assets.

As a result, revenues from housing assets-in-place covary less strongly with the pricing kernel over

the long run, reducing the return premium, especially in strong economic conditions when the hous-

ing supply is relatively elastic. Smaller buildings have higher expected returns than large buildings,

because a greater fraction of their value derives from the growth option to build a bigger building in

the future. This growth option is an exposure to business cycle risk, which carries a high premium.

The expected return on non-housing capital is higher than the expected return to buildings because

non-housing capital is, not surprisingly, more exposed to the primary risk factor in the economy, the

natural growth of non-housing capital. The magnitude of the premium on non-housing capital in

excess of that on buildings is also pro-cyclical. The diversion of non-housing capital to the housing
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Figure 10: Expected Excess Return on Non-Housing Capital and Buildings

The instantaneous expected rate of return on trees (middle curve), housing assets-in-place (bottom

curve) and growth options (top curve), as a function of the business cycle variable z D Y=Q�c.

Parameters are, for the conversion technology: K.q/ D q3=2 and ı D 0:01; for the agents’ prefer-

ences: � D 0:02, 
C

D 1:5, and a D 2=3; and for the technological shocks: �X D 0:02, �X D 0:1,

�c D 0, �c D 0:03 and � D 0.
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sector results in higher marginal utility of non-housing consumption, increasing the covariance of

the pricing kernel with the output of non-housing capital in expansions. This increases the premium

demanded on non-housing capital in expansions relative to recessions. This, in conjunction with

the counter-cyclical premium on buildings, implies the pro-cyclical wedge in the rates of return on

non-housing capital and buildings.

9 Conclusion

When preferences over housing and other goods and services are nonseparable, investment con-

straints on altering the aggregate stock of housing have real, first-order economic consequences.

Moreover, the asymmetric nature of the constraint, irreversibility that makes disinvestment in bad
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times more difficult than investment in good times, means the impact of these investment frictions

varies over the business cycle. This generates endogenous time-variation in the expected rate of

consumption growth, even when the shocks driving the economy show no such variation, because

welfare improving adjustments in the composition of consumption only occur at times when the

investment constraint does not bind. This has broad macroeconomic implications.We show that

nonseparable preferences and investment irreversibility imply a term structure slope of real interest

rates that is hump-shaped in economic strength, an interest rate volatility term structure that is un-

conditionally downward sloping but conditionally hump-shaped, an upward sloping term structure

of consumption risk premia that slopes more steeply in expansions than in recessions, and forward

markets that may be either backward dated or in contango, depending on the state of the econ-

omy. We also show that the frictions are consistent with both the time-series and cross-section of

investment, generating “lumpy” investment at the firm level and heterogeneity across firms.
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A Implied housing service consumption in PST

PST assume standard CRRA over aggregated consumption,

U.Yt ; Qt / D Et

�Z 1

0

e��s

�

C.YtCs ;QtCs/
1�

1�

�

ds

�

(107)

where non-housing consumption and housing services are aggregated assuming constant intratemporal elas-

ticity of substitution �,

C .Yt ; Qt / D
�

Y
��1

�
t C wQ

��1
�

t

� �
��1

: (108)

In the limit as � ! 1 the aggregation is of Cobb-Douglas form. PST’s preferred parameters for � are 1.05

and 1.25, which are close to Cobb-Douglas.

PST define the non-housing consumption share as

˛t D P Y
t Yt

P Y
t Yt CP

Q
t Qt

; (109)

where P Y
t and P

Q
t denote the unit prices of non-housing consumption and housing services. Using the

previous definition, and the fact that

P
Q
t

P Y
t

D w
�

Qt

Yt

�1=�

; (110)

housing consumption at t can be written as

Qt D w
�

��1

�

˛�1
t � 1

� �
��1 Yt : (111)

The ratio of housing consumption at t C s relative to t is, therefore, given by

Qt;s D
�

˛�1
tCs

�1

˛�1
t �1

� �
��1

Yt;s : (112)

The drop in housing consumption share (1 � ˛) from 19% in the mid-1980s to 17% in 2000 implies,

if � D 1:25, that the consumption of real housing services fell nearly 50% over the period, and implies, if

� D 1:05, that the consumption of real housing services fell more than 90%. In the period encompassing the

Great Depression the housing consumption share fell from 23%, in the early ’30s, to 12%, in the late ’40s.

If � D 1:25 this implies real housing consumption was 30 times as high at the start of the sample as at the

end of the sample. If � D 1:05 it implies real housing consumption was 2,000,000 times as high at the start

of the sample as at the end of the sample. These numbers, which seem implausible, are required to generate

the volatility in “true aggregate consumption” necessary to generate a large equity premium using CRRA

preferences.
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B Proofs of Propositions

Proof of Proposition 4.1

Proof of the proposition: The perpetuity factor is given by

� � E0
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0
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0;t dt
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, and the last line results from �0;T D z�=z0 and the definition of ˛

(equation (37) in the Strategy Hypothesis), and
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Proof of Proposition 4.2

Lemma B.1. If xt and yt are geometric Brownian processes and M
y
t denotes the maximum of y up to time-t ,

then

… � Et
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ˇ
ˇyt D M

y
t

�

D
�

˛ � ˇ

˛ � ˇ � ‚

�

�x (116)
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where �x D 1
r��x

and

˛ D

v
u
u
t
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:

where zt � .ln xt ; lnyt /
0.

Proof of lemma: Given any initial xt , yt , and M
y
t
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If � � mins>0fytCs D M
y
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y
tCs D M
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Now xt;s=y
ˇ
t;s is independent of yt;s , and thus independent of � , so
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t =yt ,
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Smooth pasting requires d
dy
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ˇ
ˇ
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where we’ve used dx
dy
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Equating the right hand sides of equations (121) and (122) and solving for … yields the lemma. �

Proof of the proposition: Et
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perpetuity factor follows from Lemma B.1,
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D
�

�t

��

�‰�

:

Proof of Proposition 4.3

Lemma B.2. If f .1/ > 0; f 0.1/ > 0; andf 00.x/ � 0 for all x > 1, then for any a > 1

d2

dx2 f .x/a > 0 for all x > 1 (125)

lim
x!1

x

f .x/a
D 0: (126)
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Proof of lemma: For the convexity of f .x/a ,

d2

dx2 f .x/a D a.a � 1/f .x/a�2f 0.x/2 C af .x/a�1f 00.x/; (127)

and for x > 1 the first term on the right is strictly positive, while the second term is non-negative.

The fact that o.f .x/a/ > 1 follows immediately from the fact that f is positive and convex, which

implies that f .x/ � f 0.1/.x � 1/.

Proof of the proposition: Let f .x/ D K.x/1�1=� , and let
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h.x/ �
�

x � 1
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which exist because h(x) is continuous and positive on x > 1 and h.1/ D 0 D limx!1 h.x/ (by lemma B.2),

and is unique because x� must satisfy

f .x/ � .x � 1/f 0.x/ D 0; (129)

which has at most one solution because the left hand side of which is strictly positive at x D 1, and decreasing

for all x > 1 because f .x/ is strictly convex on x > 1, by lemma B.2, using the weak convexity of K.x/1=�

and .� � 1/�=� > 1.
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must satisfy d
dx
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has a unique solution greater than one, because it is strictly positive (unbounded) in the limit as x goes to one

from above, strictly negative for all x > x� because d
dx

ln g.x/ < d
dx

ln h.x/ < 0 for x > x�, and strictly

decreasing for all x 2 .1; x�/, because the second term on the right hand side of the previous equation is

decreasing for all x > 1, and the derivative of the first term is
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�
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.x � 1/2f .x/2
(132)

which is strictly negative on the interval .1; x�/, because the first term is negative for x > 1 and the second

term of is negative for x 2 .1; x�/.

Proof of Proposition 4.4

Proof of the proposition: We already calculated the annuity factor for housing capital, equation (123). Cal-
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culating the annuity factor for non-housing capital follows the same methodology,
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Proof of Proposition 4.5

Proof of the proposition: Using the results of Proposition 4.1,
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Then proposition 4.2 and the definition of aq gives
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Substituting the previous equation into the preceeding equation, together with the fact that at the development

boundary p D p��1p�, then yields the proposition.

Proof of Proposition 6.1

Lemma B.3. Suppose xt is a geometric Brownian process with volatility � and expected growth rate � >
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where

Fx .X; ˛; ˇ; T/ D N

�
ln X

�
p

T
� c

p
T

�

� �X2c=�N

�� ln X

�
p

T
� c

p
T

�

(138)

Gx .X; ˛; ˇ; T/ D .1 C �/X�ˇ N

�� ln X

�
p

T
C .c C ˇ�/

p
T

�

(139)

56



with c �
�

�
�

� �
2

�

C ˛� and � � �ˇ
2cC�ˇ

.

Before proving the lemma, we would like to note some comforting properties of this explicit charac-

terization. First, if ˇ D 0 then the right hand side of equation (137) reduces to Et
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, as it obviously

should. The right hand side of (137) also reduces to Et
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i

in the limit as M x=x gets large. Finally, if

˛ D �ˇ D 1 then as T gets large we get the well known long-run mean of a geometric Brownian process

reflected from above,
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Proof of lemma: The underlying process xt;T is distributed exp
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where � denotes

a standard normal random variable. Using this, in conjunction with the Markovian nature of Brownian motion

and the joint density for the value and the maximum of a standard Brownian up to time T , and a change of

measure, we have that the expectation on the left hand side of the previous equation is given by
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The interior integral, after completing the square in the exponent and simplifying, yields
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Substituting the previous two equations into equation (142), we have that Et
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We can evaluate the integral in the previous equation by considering the regions m < 1
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which proves the lemma.

Lemma B.4. For T > 0 and arbitrary a and b
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where Mt denotes the maximum of � up to time-t , and

H .X; a; b; T / � 1

T
ln
�

F� .X; a; b; T / C eƒ.a;b/T G� .X; a; b; T /
�

(150)
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�
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� ln Et
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D b

�
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: (151)

Proof of lemma:
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while by lemma B.3
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and
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which is the growth rate of Et

h
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, where the last line follows from
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D
�
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X ˇ̌̌
�

e0
X †1 �

�

e0
X ˇ̌̌
�2

10
†1;

which is zero because ˇ̌̌ D †1

10†1
.

Proof of the proposition: gt .T / D ln Et ŒCt;T � =T and Ct;T D e�.1�a/ıT Xa
t;T

M b
t;T

, so

r
f
t .T / D 1

T
ln Et

h
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t;T M b

t;T

i

� .1 � a/ı; (155)

and the proposition follows directly from 1
T

ln Et

h

Xa
t;T

i

D a

�

�X C .a � 1/
�2

X

2

�

using Lemma B.4.
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For corollary 6.2,

lim
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X

2
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where ƒ
�

aˇ
X;�

; b
�

D b
�

�ı C 10M C
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b C 2aˇ
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�
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�

, so

�C
1 D v0M C v0

†v

2
� .1 � a � b�/ ı (157)

where v D ae C b1. Using b�=.1 � a/ D �=.� � 1/� and the definition of ‰ then proves the corollary.

Proof of Proposition 7.1

Proof of the proposition: B
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and the proposition follows directly from 1
T
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For corollary 7.2,
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where ƒ
�

�a
C

ˇ
X;�

; �b
C

�

D �b
C

�

�ı C 10M �
�

b C 2aˇ
X;�

�


C

1
0
†1

2

�

, so

lim
T !1

r
f
t;T

D r
f

L.a
C /

� .1 � a � b�/ 
C

ı C b
C

�

10M �
�

b C 2aˇ
X;�

�


C

10
†1

2

�

: (160)

Proof of Proposition 7.2

Proof of the proposition: The expected rate of return over the life of the consumption bond is given by
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while
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Taking 1
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previous two equations then yields the proposition.

For corollary 7.4, note that rc
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Proof of Proposition 7.3

Proof of the proposition: B i
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:

The proposition then follows from r i
t .T / D �.ln B i

t .T //=T and Lemma B.4.

Proof of Proposition 8.1

Proof of the proposition: To see that 1 � w
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Taking the reciprocal and substituting …I =� D 1 C �= .‰� � 1/, given in equation (64), then yields 1 �
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so using the definition of a consumption bond we have that ��1 C �C D rc
0 . Finally, using Ct;s D

e.a�1/ısXa
t;s and �t;s D e�ısXt;s=ct;s , and the definitions of M and †, yields R.

Proof of Proposition 8.2
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Taking the reciprocal and substituting …II =� D 1 C .� � 1 C ‰/= .‰� � ‰/, given in equation (49), then

yields 1 � w

�

zt

z� ;
�

q

q

�.��1/.��1/

‚; � � 1 C ‰

�

.

C Money

We were interested in a numeraire that unambiguously related consumption to consumers’ quality of life

(i.e., instantaneous utility), and this led us to employ aggregated consumption. This choice is consistent with

including money explicitly in the economy, and using “real” dollars, defined as nominal dollars adjusted for

inflation using the chained Fisher index, as numeraire. This choice of price deflator is compelling on both

practical and theoretical grounds. It is standard in practice, used, for example, by the U.S. Department of

Commerce’s Bureau of Economic Analysis when compiling the National Income and Product Accounts. It

is also “ideal” in our economy, as the unit price of the aggregate consumption bundle Ct is constant in “real”

(i.e., deflated) dollars, and consumption is thus unambiguously related to consumers’ quality of life.

C.1 The Price Deflator

Assume exchange is mediated, due to a cash-in-advance constraint on consumption goods, by currency (fiat

money). That is, firms sell their output in exchange for “dollars,” which exist in fixed positive net supply m

and are initially endowed to households, and pay dollar profits as dividends.15 Calculating the continuously

chained Fisher index explicitly yields the following proposition.

15 We will make parameter restrictions to ensure that the cash-in-advance constraint binds at all times, though these

can be relaxed by introducing sufficient growth in the money supply.
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Proposition C.1. The continuously chained Fisher index is ideal; the change in the price level from t to

t C T , as measured by the chained Fisher index, is the inverse of the change in aggregate consumption,

iF
t;T D C �1

t;T : (170)

Proposition C.1 says that consumption measured in nominal dollars at prices deflated using the continu-

ously chained Fisher index is directly proportional to aggregate consumption, Ct . A real dollar buys a basket,

optimal at the prevailing prices, which delivers a constant quantity of the appropriately aggregated consump-

tion bundle. That is, at deflated prices a dollar affords an agent with the same preferences as the representative

consumer the same quality of life at any time.

Proof of Proposition C.1

Proof of the proposition: The Fisher index attempts to accommodate substitution in consumer spending

while holding living standards constant by taking the geometric mean of Laspeyres and Paasche indices,

which individually overstate and understate inflation, respectively.

The Laspeyres index measures today’s cost of yesterday’s consumption basket relative to yesterday’s cost

of yesterday’s basket. That is, letting iL.t; t0/ denote the time-t Laspeyres index with base year t0, which

measures the time-t price of the time-t0 consumption basket relative to the price of the basket at time-t0,

iL.t; t0/ D Yt0P Y
t C Qt0P

Q
t

Yt0P Y
t0

C Qt0P
Q
t0

(171)

where P Y
t D am=Yt and P

Q
t D .1 � a/m=Qt are the unit prices, in nominal dollars, of the non-housing

consumption good and housing services, respectively.16 This index systematically overstates inflation, by

ignoring the fact that consumers can buy a less expensive, but equally desirable, basket of goods today, by

substituting out of goods that have become relatively expensive into goods that have become relatively cheap.

The Paasche index measures today’s cost of todays’s consumption basket relative to yesterday’s cost of

todays’s basket. That is, letting iP .t; t0/ denote the time-t Paasche index with base year t0, which measures

the time-t price of the time-t consumption basket relative to the price of the basket at time-t0,

iP .t; t0/ D Yt P
Y
t C Qt P

Q
t

Yt P
Y
t0

C Qt P
Q
t0

: (172)

This index systematically understates inflation, by ignoring the fact that consumers could buy a less ex-

pensive, but equally desirable, basket of goods yesterday, by buying less of the goods that were relatively

expensive yesterday and more of the goods that were relatively inexpensive.

Chained indices calculate changes in relative price levels over long horizons by multiplying together

changes in relative price levels over intermediate “periods.” For example, the change in the index from time-t

to time-tC2 is obtained by “chaining” (multiplying) together the change in the index from time-t to time-t C1

and the change in the index from time-tC1 to time-tC2. The n-period chained Laspeyres and Paasche indices

16 These prices hold provided the cash-in-advance constraint binds. The conditions that ensure that the constraint binds

at all times follow the proof the proposition, in corollary C.1.
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from t0 to t are then given by

iL
n .t; t0/ �

n
Y

iD1
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n
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(173)
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n
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n
.t � t0/

�

: (174)

The continuously chained Laspeyres and Paasche indices from t0 to t are defined by

i
L;t0
t � lim

n!1
iL
n .t; t0/ (175)

i
P;t0
t � lim

n!1
iP
n .t; t0/; (176)

and the continuously chained Fisher index is defined as

iF
t �

q

iL
t � iP

t ; (177)

where for notational convenience we have suppressed dependence on the base year, because the choice of

base year, which is irrelevant for relative price levels across time, is immaterial for our results.

The continuously chained Laspeyres and Paasche indices are multiplicative over sub-periods: given any

t1 2 .t0; t/, i
�;t0
t D i

�;t0
t1

i
�;t1
t . Consequently, the change in one of these indices over an interval dt , scaled by

its own level, is independent of the base year, so suppressing the base year in the notation we have
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Then
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:

Finally, note that a nominal dollar is a fixed (1=m fractional) claim to aggregate consumption, so nominal

bonds are consumption bonds, and are priced accordingly. The payoff is, however, nominally risk-free, so

the nominal interest rate is given by rn
t .T / D � ln Et

h

e��T C
1�

C

t;T

i

=T , so as a corollary to proposition 7.2
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The cash-in-advance constraint consequently binds at all times provided this rate is unambiguously positive.

If this rate is always positive no agent will ever have an incentive to put a dollar under her mattress, because

the dollar can always be loaned out at a positive rate. The parameter restrictions that guarantee the cash-in-

advance constraint always binds are given in the following corollary.

Corollary C.1. If � C
�


C

� 1
�
�

�C � 
C

�2
C

2

�

> 0 and 
C

� 1 then the cash-in-advance constraint binds

at all times.

If the first condition holds, than nominal interest rates would be strictly positive absent the conversion

technology. If the second condition holds, i.e., if the representative consumer is more risk-averse than log-

preferences, than the intertemporal smoothing motive dominates wealth effects and the conversion technol-

ogy, which increases the expected growth rate of aggregate consumption, increases interest rates.
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